跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉世瑄
Shih-hsuan Yeh
論文名稱: 系集定量降水預報方法之研究
QPF Verification Study of the Ensemble Forecast System
指導教授: 林沛練
Pay-liam Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 98
中文關鍵詞: 系集預報系統定量降水預報機率擬和平均PM修改之PM法PMmod.預兆得分公正預兆得分
外文關鍵詞: EPS(Ensemble Prediction System), QPF(Quantitative Precipitation Forecast), PM(Probability-matched mean), PMmod.(PM modify), TS(Threat Score), ETS(Equitable threat score)
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   如何應用並擷取系集成員的預報結果是非常重要的。系集平均為普遍使用的統計方 法,但因雨量不連續性以及極值發生區域太局部,系集平均會將極值平滑掉導致雨量低估,本研究中使用兩個統計方式:PM與PMmod.來改善此缺陷。PM(Ebert, 2001)為使用系集平均的空間分布並經由重新分配所有系集之降雨頻率分布來改善QPF;另外,本研究自行提出新的系集QPF方法PMmod.,設計理念為一個好的系集預報理論上應可將真實的降雨極值包含在各系集成員的QPF極值中,這個方法基於PM的概念,使用系集平均之空間分布,但降雨頻率則是各成員降雨頻率之系集平均。
      本研究使用兩個預報個案與2012年6月平均進行測試並分析中央氣象局(CWB)系集預報系統(WEPS)的系集平均、PM與PMmod.方法得到的QPF特性與技術得分,發現PMmod.或PM都可增加QPF技術,例如在50毫米,PM與PMmod. 皆可使官方TS進步率達11.5%,ETS進步率可達50%,但中小雨的預報技術仍是系集平均較好。在個案一的梅雨鋒面個案中,因系集模式對梅雨鋒面的速度與強度掌握有所偏差,使系集成員極值皆預報不足,因此即使使用PM仍不足預測極值。在個案二的蘇力(2013)颱風個案中,使用PMmod.或PM的前12小時QPF皆比系集平均佳,但後12小時PM的QPF明顯高估,主因為模式中的颱風移速較實際移速慢。另外在兩個個案中,無論是系集平均、PM或PMmod降雨分布皆有集中在山區的偏差或傾向,顯示WEPS對於台灣地形上的降雨偏差仍有進步的空間。
      系集平均、PM或是PMmod.等後處理方式,可以有限度改善預報結果。但假使一開始模式預報就沒有掌握到實際降水的特徵,則這些後處理方式能幫助的其實非常有限,這就回溯於系集預報系統本身動力設定的改善。從前人研究可知,如果先調整原本的降水空間分布與系統誤差校正,再進行PM或PMmod.,可以取得更好的預報結果。


    From ensemble members results to get useful information is an important issue for ensemble forecast system. Since rainfall distribution is not continuous, and too localized such as especially extreme heavy rainfall occur, the averaging process usually "smears" the rain rates so that the maximum rainfall is reduced and area of light rain is artificially enlarged. PM(probability-matched ensemble mean) is a new ensemble product, it has the similar spatial pattern as the simple ensemble mean, and could catch correct frequency distribution of rain rates and QPFs. Especially, we will propose a modify PM( PMmod.). It is similar as PM could display similar spatial pattern as the simple ensemble mean, its performance depends on the actual rainfall extremes should be included in the all members QPFs of a good Ensemble Prediction System (EPS). Therefore it is suitable to average all the rain rates frequency distribution from all the individual members.
    From the 20120610-20120612 case (Case1), Typhoon Soulik(2013) case (Case2) and 201206 monthly experiment to analyze the characteristic and skill of the ensemble mean, PM and PMmod., we can find that they can modify the QPF, especially PM and PMmod. can make the TS progress rate up to 11.5%, ETS progress rate even up to 50% in the 50 mm(12 accumulated precipitation). But in the light rain, the ensemble mean is still the best. Nerveless, in Case1, the ensemble members don’t catch the correct speed and strength of the Meiyu front, the rainfall for ensemble member distribution is generally underestimated, that is a reason why PM can’t forecast the heavy rain correctly. In Case2, it has good performance for PM and PMmod results from the previous 12 hours rainfall forecast of typhoon Soulik, however in the later 12 hours rainfall forecast of the Soulik, the QPF is generally overestimate in all three statistical methods, because the simulated storm speed is slower than actual. Especiall, the spatial pattern of the ensemble mean, in both PM and PMmod concentrated in the mountains and result in bias. From this study, we can find that derive the correct distribution of rainfall result from the ensemble forecast system(WEPS) over the complex terrain in Taiwan has some progress but still need be investigated in the coming days.
    If all ensemble members of forecast model can’t catch the correct event signal, no matter what kind post processes method as simple ensemble mean, PM or PMmod could only modify the forecast results a little. Nevertheless, all the products like mean, previous study pointed out several include a resampling of the ensemble realizations, a rainfall pattern adjustment, and a bias-correction, could modify PM scheme to substantially reduce or eliminate the intrinsic model rainfall bias and to provide better QPFs. Expectations of the future, pattern adjustment and bias-correction both PM or PMmod processes to improve QPFs of ensemble forecast.

    摘要....................................................i ABSTRACT...............................................ii 致謝....................................................iv 目錄....................................................v 表目錄...................................................vii 圖表目錄.................................................viii 第一章 序論............................................1 (一) 前言與文獻回顧....................................1 (二) 研究動機與目的....................................4 第二章 觀測資料與研究方法.................................6 (一) 本研究使用資料....................................6 (二) 模式簡介.........................................6 (三) 個案介紹.........................................8 (四) 研究方法.........................................8 1. PM(Probability-matched mean)...................9 2. PMmod.(PM modify)..............................10 3. BS、TS與ETS.....................................12 第三章 個案分析與結果討論.................................14 (一) 個案一 綜觀天氣與觀測資料分析........................14 (二) 個案一 預報結果比對、分析與討論.......................14 1. 系集QPF分析與比較..................................14 2. 系集QPF 之TS、ETS 與BS............................16 個案一小結................................................16 (三) 個案二 綜觀天氣與觀測資料分析 ........................17 (四) 個案二 預報結果比對、分析與討論.......................17 1. 系集QPF 之分析與比較...............................17 2. 系集QPF 之TS、ETS 與BS............................19 個案二小結................................................20 (五) QPF 產品特性統計...................................20 2012年6月統計小結..........................................22 第四章 結論與未來展望.....................................24 (一) 結論與討論........................................24 (二) 未來展望..........................................26 參考文獻..................................................28 附表.....................................................32 附圖.....................................................35

    李志昕、洪景山,2011:區域系集預報系統研究:物理參數化擾動。大氣科學,
      39,95 - 116。
    胡志文、馮欽賜、汪鳳如、陳建河、鄭明典,2002:中央氣象局全球模式之氣候特  徵:東亞夏季季風。大氣科學,30,99-116。
    洪志誠:天氣預報的準確度,
    http://mail.dali.tc.edu.tw/~earth/dali-earth/chapter/ch8/forecast2.htm
    郭閔超、李孟軒、蔡甫甸,2012:中央氣象局2013~2011年官方降水預報之分析  與探討。天氣分析與預報研討會,143-146。
    曹嘉宏、洪景山,2011:系集模式颱風定量降水:個案研究。建國百年天氣分析預  報與地震測報研討會論文彙編,中央氣象局,278-282。
    曾仁佑、林沛練、馬佳齡、童裕翔,2004:東亞地區區域氣候之可預報度與回歸預  報研究。全球變遷通訊雜誌,41,25-34。
    黃椿喜、呂國臣、洪景山,2012:系集預報系統在氣象局鄉鎮精緻化預報之應用。  天氣分析與預報研討會,143-146。
    鄭凱傑、胡志文、施宇晴,2011:二步法動力氣候預報統系集預報診斷分析。建國  百年天氣分析預報與地震測報研討會論文彙編,中央氣象局,355-360。
    簡芳菁、柳懿秦、周仲島、林沛練、洪景山和蕭玲鳳,2005:2003 年梅雨季MM5   系集降水預報。大氣科學,33,255 - 275。
    美國國家氣象局天氣預報中心(NWSWPC),
    http://www.hpc.ncep.noaa.gov/html/hpcverif.shtml#6hour
    歐洲中期天氣預報中心 (ECMWF),
    http://www.ecmwf.int/products/forecasts/guide/Ensemble_mean_and_median.html
    澳大利亞天氣與氣候研究中心(CAWCR),
    http://www.cawcr.gov.au/staff/eee/etrap/probmatch.html
    27th session of the Working Group on Numerical   
      Experimentation, Boulder, CO, USA, 17-21 October 2011
    Buizza, Roberto, 2000: Chaos and Weather Prediction.
    http://www.ecmwf.int.newsevents/training/course_notes/PREDICTABILITY/CHAOS/index.html.
    Chen, W. Y., and H. M. van Den Dool, 1997. Atmospheric   
      Predictability of Seasonal, Annual, and Decadal Climate
      Means and the Role of the ENSO Cycle: A Model Study.
      Journal of Climate, 10, 1236-1254.
    Chien, F. C., and B. J.-D. Jou, 2004:MM5 Ensemble
      Precipitation Forecasts in the Taiwan Area for Three
      Early Summer Convective (Mei-yu) Seasons, Wea.   
      Forecasting, 19, 735-750.
    Ebert, Elizabeth E., 2001: Ability of a Poor Man's Ensemble   to Predict the Probability and Distribution of
      Precipitation. Mon. Wea. Rev., 129, 2461–2480.
    Fang, X, and Y. Kuo, 2013: Improving ensemble-based
      quantitative precipitation forecast for topography-
      enhanced typhoon heavy rainfall over Taiwan with a
      modified probability-matching technique. Mon. Wea. Rev.
      doi:10.1175/MWR-D-13-00012.1, in press.
    Leith, C. E., 1974: Theoretical skill of Monte Carlo
      forecasts. Mon.Wea. Rev., 102, 409–418.
    Lorenz, Edward N., 1963: Deterministic Nonperiodic Flow. J.
      Atmos. Sci., 20, 130–141.
    --------- and E.N., 1965, A study of the predictability of a
      28-variable atmosphere model . Tellus, 17, 321-333.
    --------- and E.N., 1969, Atmosphere predictability of a
      flow which possesses many scales of motion . Tellus ,
      21, 289-307.
    Roeckner E., G. Bäuml, L. Bonaventura, R. Brokopf, M. Esch,
      M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh,
      E. Manzini, A. Rhodin, U. Schlese, U. Schulzweida, and
      A.Tompkins, 2003: The atmospheric general circulation
      model ECHAM 5. PART I: Model description. Max Planck
      Institute for Meteorology Rep. No. 349. 140pp.
    Stensrud, D. J., J. W. Bao, T. T. Warner, 2000. Using
      initial condition and model physics perturbations in
      short-range ensemble simulations of mesoscale convective
      systems. Monthly Weather Review, 128, 2077-2107.
    Toth, O. Talagrand, G. Candille and Y. Zhu, 2003: Chapter 7:
      Probability and ensemble forecast, Environmental
      Forecast Verification: A Practitioner’s Guide in
      Atmospheric Science, Edited by I. T. Jolliffe and D. B.
      Stephenson, John Willey & Sons.
    Yang, M.-J.; B. J.-D. Jou, S. C. Wang, J. S. Hong, P. L.
      Lin, J. H. Teng, H. C. Lin, Hui-Chuan, 2004: Ensemble
      prediction of rainfall during the 2000–2002 Mei-Yu
      seasons: Evaluation over the Taiwan area. J. Geophys.
      Res., 109, D18203. doi:10.1029/2003JD004368.
    Zhou, B. , J. McQueen, J. Du, G. DiMego, Z. Toth and Y. Zhu,
      2005: Ensemble forecast and verification of low level
      wind shear by the NCEP SREF system. 21st Conference on
      Weather Analysis and Forecasting/17th Conference on
      Numerical Weather Prediction. Washington, D.C., Amer.
      Meteor. Soc.,11B.7A
    ------ and J. Du, 2010: Fog prediction from a multi-model
      mesoscale ensemble prediction system. Wea. Forecasting,
      25, 303-322.
    Zhu, Y. and Z. Toth, 2008: Ensemble Based Probabilistic
      Forecast Verification. 19th AMS conference on
      Probability and Statistics. New Orleans, LA, 20-24 Jan.
      2008.

    QR CODE
    :::