跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊政倫
Cheng-Lun Yang
論文名稱: 不平衡識別應用於磁浮軸承自動平衡控制
指導教授: 董必正
Pi-Chen Tung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 76
中文關鍵詞: 磁浮軸承不平衡識別自動平衡
外文關鍵詞: Magnetic bearing, Unbalance identification, Automatic balance
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業對於效率、精度的要求日益提升。針對高速運轉的機構部件而言,磁浮軸承的開發成為必然的趨勢。其相較於傳統接觸式軸承而言,不會因為接觸之摩擦造成轉子與軸承間的能量損耗及溫度增加,不僅僅大幅提高機構壽命,並且對於高轉速的負荷程度更是遠高於傳統軸承。
    然轉子不平衡引起的振動為磁浮軸承運轉時會遇到的情形,透過一種基於不平衡識別的磁浮軸承轉子系統自動平衡法,對於不平衡干擾有顯著之抑制作用。該法不需要受控體的轉移函數,也不影響控制系統之穩定度,透過對磁浮軸承施加試探激振訊號,並檢測控制訊號解調後之振幅與相位變化,識別出不平衡干擾訊號的Fourier系數,經由計算以產生精確的補償訊號,使轉子繞質心旋轉,提高運轉穩定及效率。


    Industry for efficiency, accuracy requirements are increasing. For the high-speed operation mechanism, the development of magnetic bearing become an irreplaceable trend. Compared with traditional bearing, the friction between the rotor and the bearing is almost zero, won’t cause energy loss and temperature increase, not only greatly improve the life of the machine, and for the speed limit is higher than the traditional bearing.
    The vibration caused by the unbalance of the rotor is the main excitation source of the high speed operation of the magnetic bearing. Through the automatic balance method of the rotor system of the magnetic bearing based on the unbalance identification, it has a significant inhibitory effect on the unbalanced interference. The method doesn’t need the transfer function of the object and doesn’t affect the stability of the control system. The Fourier coefficient of the unbalanced jamming signal is identified by applying the test excitation signal to the magnetic bearing on-line and detecting the amplitude and phase change of the control current response. To produce accurate compensation signal, improving the operation of stability and efficiency.

    目錄 摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 viii 符號說明 ix 第一章 緒論 1 1-1 研究背景與動機 1 1-2 文獻回顧 2 1-3 研究方法與系統架構 3 第二章 磁浮軸承原理簡介 4 2-1 簡介 4 2-2 磁路分析 5 2-3 磁力之線性化 7 2-4 磁浮軸承系統原理 8 第三章 控制演算法 9 3-1 介紹 9 3-2 PID控制 10 3-3 不平衡識別之自動平衡[1] 12 3-3-1 磁浮軸承轉子不平衡特性 12 3-3-2 自動平衡模型 14 3-3-3 自動平衡補償演算法 16 第四章 實驗平台架構與模擬 21 4-1 簡介 21 4-2 軟體架構 21 4-3 硬體 23 4-3-1 磁浮軸承 23 4-3-2 位置感測器 25 4-3-3 電磁鐵與電流放大器 26 4-3-4 控制載板 27 4-3-5 變頻器 36 4-3-6 電流探棒 36 4-4 電腦模擬 38 第五章 實驗結果 49 5-1 實驗環境 49 5-2 實驗結果分析 50 第六章 結論與未來展望 57 6-1 結論 57 6-2 未來展望 58 參考文獻 59

    [1] 蔣科堅, 祝長生, 基於不平衡識別的主動電磁軸承轉子系統自動平衡 振動工程學報, 2009 Vol.22, No.6, pp. 559-564.
    [2] T. Higuchi, T. Mizuno, and M. Tsukamoto, “Digital control system for magnetic bearings with automatic balancing”, in Proceedings of the Second International Symposium on Magnetic Bearings, University of Tokyo, Japan, July 1990.
    [3] W.-L. Lee, W. Schumacher, and W.-R. Canders, “Unbalance compensation on AMB system without a rotational sensor”, in Proceedings of the Eighth International Symposium on Magnetic Bearings, Mito, Japan, August 2002.
    [4] R.Herzog, P.Buhler, C.Gahler and Rene Larsonneur, “Unbalance Compensation Using Generalized Notch Filters in the Multivariable Feedback of Magnetic Bearings”, in Proceedings of IEEE Transactions on Control Systems Technology, 1996, pp. 580-586
    [5] S. Zheng, Q. Chen, H. Ren, “Active Balancing Control of AMB-Rotor Systems Using a Phase-Shift Notch Filter Connected in Parallel Mode”, in Proceedings of IEEE Transactions on Industrial Electronics, 2016, pp.3777-3785.
    [6] R. R. Humphris, R. D. Kelm, D. W. Lewis, P. E. Allarie. “Effect of Control Algorithm on Magnetic Journal Bearing Properties”, Trans. of ASME, Journal of Engineering for Gas Turbines and Power, October 1986, Vol. 108, pp.624-632.
    [7] G. Schweitzer, E. Maslen, “Magnetic Bearings- Theory, Design and Apply to Rotating Machinery”, Springer, 2009.
    [8] 黃松鶴, 磁浮軸承之非線性控制, 國立中央大學機械所碩士論文, 2001
    [9] 廖宜鵬, 全磁浮軸承系統之研究, 國立中央大學機械所碩士論文, 1997
    [10] 黃昭明, 參數自我調整控制於非線性磁浮軸承系統之應用, 國立中央 大學機械所碩士論文, 1995
    [11] TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data Manual, Texas Instruments, June 2007
    [12] ADI, “AD7609 Datasheet”, 2010
    [13] Texas Instruments, “TLV5614 Datasheet”, 2003
    [14] 張卿杰, 徐友, 左楠, 卞康君, 手把手教你學DSP-基於TMS320F28335, 北京航空航天大學出版社, 2016
    [15] J. Setiawan, R. Mukherjee, “Adaptive Compensation of Sensor Runout and Mass Unbalance in Magnetic Bearing Systems”, IEEE International Conference on Advanced Intelligent Mechatronics, 1991, pp. 800-805.
    [16]C. R. Knospe, R. R. Humphris, “Control of Unbalance Response with Magnetic Bearings”, in Proceedings of the 1992 American Control Conference, 1992, pp. 211-215.

    [17]X. Zhang, T. Shinshi, L. Li, A. Shimokohbe, “Precision Control for Rotation about Estimated Center of Inertia of Spindle Supported by Radial Magnetic  Bearing”, JSME International Journal, 2004, Vol. 47, No.1, pp.242-250.
    [18]B. Shahian, M. Hassul, “Control System Design Using MATLAB”, Prentice-Hall, New Jersey, 1993.
    [19]H. S. Na and Y. Park, “An Adaptive Feedforward Controller for Rejection of Periodic Disturbances”, Journal of Sound and Vibration 201(4), pp.427-435, 1997.
    [20]A. C. Wroblewski, J. T. Sawicki, and A. H. Pesch, “Rotor Model Updating And Validation for an Active Magnetic Bearing Based High-Speed Machining Spindle, ” Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, vol. 134(12) pp. 122509, Oct. 2012.
    [21]ISO 14839-2, Mechanical vibration—Vibration of rotating machinery equipped with active magnetic bearings—Part2: Evaluation of vibration.

    QR CODE
    :::