| 研究生: |
鍾於哲 Yu-che Chung |
|---|---|
| 論文名稱: |
新型波長調制外差光源應用於位移量測 A novel wavelength-modulated heterodyne light source for displacement measurement |
| 指導教授: |
李朱育
Ju-yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 外差光源 、位移量測 、外差干涉術 、繞射光柵 |
| 外文關鍵詞: | heterodyne light source, displacement measurement, heterodyne interferometry, diffraction grating |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一套新型的波長調制外差光源,並將此新型外差光源應用於一維
和二維準共光程光柵干涉儀之位移量測上。利用雷射二極體搭配雙折射晶體來產
生新型的外差光源,雷射二極體波長受到鋸齒波調制,並利用雙折射晶體具雙折
射率的特性,使得入射光的p 偏振光與s 偏振光產生一光程差,進而得到外差光
源。此新型外差光源的產生方式,可達到縮小體積與降低成本的功效。
首先利用四分之一波片來驗證此新型外差光源應用於相位解析的可行性,接
著應用於一維和二維準共光程光柵干涉儀之位移量測上,利用壓電平台來使光柵
位移,並利用鎖相放大器擷取因光柵位移而產生的相位變化,反推光柵位移量。
實驗證明本系統於一維準共光程光柵干涉儀之架構上量測解析度約為10
nm,於二維準共光程光柵干涉儀之Z 方向與Y 方向的量測解析度分別為10 nm
與20 nm,系統靈敏度為0.18°/nm。
關
A novel “ Wavelength-modulated heterodyne light source ” was proposed. The novel heterodyne light source was applied to the displacement measurement based on one-dimensional or two-dimensional quasi-common optical
path grating interferometry. The novel heterodyne light source used here consists of a birefringent crystal and a laser diode. The wavelength of the laser diode is modulated
by a sawtooth current signal. As a consequence of the double refraction caused by the birefringent crystal, the modulated light signal is refracted by the birefringent crystal
with two different light paths, therefore , a novel “Wavelength-modulated heterodyne light source” was proposed. The heterodyne light source can be made to a relatively small size and save much cost compared with known heterodyne light sources at present.
We first use of a quarter wave plate to validate the feasibility of the phase demodulation, then the novel heterodyne light source was applied to displacement
measurement based on one-dimensional or two-dimensional quasi-common optical path grating interferometry. We let the grating is moved by the piezoelectric, the optical phase variation which results from the grating moving will be measured by the lock-in amplifier, therefore, we can get the grating movement.
From experiment results, the resolution of the one-dimensional quasi-common optical path grating interferometry is 10 nm. The resolution in z-direction and y-direction of the two-dimensional quasi-common optical path grating
interferometry are about 10 nm and 20 nm. The sensitivity is 0.18°/nm.
[1]. H. Taub, et al., “Principles of communication system,” McGraw-Hill, New York, USA, 1986.
[2]. S. Hosoe, “Laser interferometric system for displacement measurement with high precision,” Nanotechnology, Vol.2, pp.88-95, 1991.
[3]. Y. Jourlin, et al., “Compact diffractive interferometric displacement sensor in reflection,” Precision Engineering, Vol.22, pp.1-6, 2002.
[4]. O. G. Helleso, et al., “Interferometric displacement sensor made by integrated optics on glass,” Sensors and Actuators A, Vol.47, pp.478-481, 1995.
[5]. T. Kubota, et al., “Interferometer for measuring displacement and distance,” Optics Letters, Vol.12, pp.310-312, 1987.
[6]. H. Kikuta, et al., “Distance measurement by the wavelength shift of laser diode light,” Applied Optics, Vol.25, pp.2976-2980, 1986.
[7]. U. P. Kumar, et al., “Two-wavelength micro-interferometry for 3-D surface profiling,” Optical and Lasers in Engineering, Vol.47, pp.223-229, 2009.
[8]. O. Sasaki, et al., “Sinusoidal phase modulating interferometry for surface profile measurement,” Applied Optics, Vol.25, pp.3137-3140, 1986.
[9]. T. Suzuki, et al., “Phase locked laser diode interferometry for surface profile measurement,” Applied Optics, Vol.28, pp.4407-4410, 1989.
[10]. R. Crane, “Interference phase measurement,” Applied Optics, Vol.8, pp.538-542, 1969.
[11]. M. H. Chiu, et al., “Angle measurement using total-internal-reflection heterodyne interferometry,” Optical Engineering, Vol.36, pp.1750-1753, 1997.
[12]. M. H. Chiu, et al., “Improved technique for measuring small angle,” Applied Optics, Vol.36, pp.7104-7106, 1997.
[13]. J. Y. Lee, et al., “Improved common-path optical heterodyne interferometer for measuring small optical rotation angle of chiral medium,” Optics Communications, Vol.256, pp.337-341, 2005.
[14]. Y. C. Hung, et al., “Direct measurement of refractive indices of a linear birefringent retardation plate,” Optics Communications, Vol.133, pp.11-16, 1997.
[15]. M. H. Chiu, et al., “Refractive index measurement based on the effects of the total internal refraction and uses of the heterodyne interferometry,” Applied Optics, Vol.36, pp.2936-2939, 1997.
[16]. D. C. Su, et al., “New type of liquid refractometer,” Optical Engineering, Vol.37, pp.2795-2797, 1998.
[17]. J. Y. Lee, et al., “A method for measuring Brewster’s angle by circularly polarized heterodyne interferometry,” Journal of Optics, Vol.29, pp.349-353, 1998.
[18]. W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating,” Applied Optics, Vol.9, pp.649-652, 1970.
[19]. Hong Zhang Hu, “Polarization heterodyne interferometry using a simple rotating analyzer. 1: Theory and error analysis,” Applied Optics, Vol.22, pp.2052-2056, 1983.
[20]. M. P. Kothiyal, et al., “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Optics Letters, Vol.9, pp.319-321, August 1984.
[21]. M. Sargent, et al., “Theory of a Zeeman laser I,” Physical Review Letters, Vol.164, pp.436-449, 1967.
[22]. P. Zeeman, “The effect of magnetisation on the nature of light emitted by a substance,” Nature, Vol.55, pp.347, 1987.
[23]. S. O. Kasap, Optoelectronics and photonics, Prentice Hall Inc., New Jersey, 2001.
[24]. D. C. Su, et al., “A heterodyne interferometer using an electro-optical modulator for measuring small displacements,” Journal of Optics, Vol.27, pp.16-23, 1996.
[25]. K. H. Chen, et al., “An alternative method for measuring small displacements with differential phase difference of dual-prism and heterodyne interferometry,” Measurement, Vol.45, pp.1510-1514, 2012.
[26]. Y. Zhong, et al., “A differential laser Doppler system for one-dimensional in-plane motion measurement of MEMS,” Measurement, Vol.40, pp.623-627, 2007.
[27]. K. Creath, “Interferometric investigation of a diode laser source,” Applied Optics, Vol.24, pp.1291-1293, 1985.
[28]. K. Tatsuno, et al., “Diode laser direct modulation heterodyne interferometer,” Applied Optics, Vol.26, pp.37-40, 1987.
[29]. J. Chen, et al., “Heterodyne interferometer with a frequency-modulated laser diode,” Applied Optics, Vol.27, pp.124-128, 1988.
[30]. Y. Ishii, et al., “Phase-shifting fizeau interference microscope with a wavelength-tunable laser diode,” Optical Engineering, Vol.42, pp.60-67, 2003.
[31]. R. Onodera, et al., “Phase- shifting-locked interferometer with a wavelength-modulated laser diode,” Applied Optics, Vol.24, pp.91-96, 2003.
[32]. J. Y. Lee, et al., “Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interferometry,” Applied Optics, Vol.51, pp.1095-1100, 2012.
[33]. C. M. Sutton, “Non-linearity in length measurement using heterodyne laser Michelson interferometry,” Journal of Physics E: Scientific Instruments, Vol.20, pp.1290-1292, 1987.
[34]. J. Lawal, et al., “Michelson interferometry with 10 pm accuracy,” Review of Scientific Instruments, Vol.71, pp.2669-2676, 2000.
[35]. D. Xiaoli, et al., “High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Measurement Science and Technology, Vol. 9, pp. 1031-1035, 1998.
[36]. M. Nevivre, et al., “High-accuracy translation-rotation encoder with two gratings in a Littrow mount,” Applied Optics, Vol.38, pp.67-76, 1999.
[37]. J. Y. Lee, et al., “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution,” Sensors and Actuators A: Physical, Vol.137, pp.185-191, 2007.
[38]. C. C. Hsu, et al., “Reflection type heterodyne grating interferometry for in-plane displacement measurement,” Optics Communications, Vol.281, pp.2582-2589, 2008.
[39]. J. Y. Lee, et al., “Optical heterodyne grating shearing interferometry for long-range positioning applications,” Optics Communications, Vol.284, pp.857-862, 2011.
[40]. 雷射二極體(LD)與發光二極體(LED)的發光特性,http://www.phy.fju.edu.tw/files/archive/832_c4f0867b.pdf
[41]. 雷射二極體(ML520G54),http://www.frlaserco.com/download/20130419164238/ml5xx54.pdf
[42]. Y. Ishii, “Wavelength-Tunable Laser-Diode Interferometer,” Optical Review, Vol.6, pp.273-283, 1999.
[43]. F. L. Pedrotti and L. S. Pedrotti, Introduction to optics, Prentice Hall Inc., 1993.
[44]. 吳維庭,「準共光程外差光柵干涉術之研究」,國立中央大學,碩士論文,民國97年。
[45]. J. Y. Lee, et al., “Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement,” Applied Optics, Vol.50, pp.1272-1279, 2011.
[46]. Stanford Research System, Model SR850 DSP Lock-In Amplifier, 1992.
[47]. 林正淳,光學機構設計,林正淳,新竹縣,台灣,2008。