跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊承諭
Cheng-Yu Yang
論文名稱: 共振腔形式量子記憶體參數實驗分析
Parameter Analysis and Experiment of The Cavity Based Quantum Memory
指導教授: 蔡秉儒
Pin-Ju Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 65
中文關鍵詞: 量子通訊量子中繼站量子記憶體光學共振腔
外文關鍵詞: Quantum communication, Quantum repeater, Quantum memory, Cavity
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著量子通訊技術的快速發展,為克服長距離傳輸所面臨的信號衰減與量子態破壞等挑戰,量子中繼站協定應運而生。該協定基於量子通訊中的糾纏生成與糾纏交換兩種機制,使中繼節點間能共享量子關聯性,進而有效延伸通訊距離,實現長距離量子資訊傳輸。本文聚焦於量子中繼協定的記憶體式中繼架構,首先介紹其基本運作原理,並進一步選擇共振腔系統作為研究對象,探討其作為量子記憶體的儲存與讀取機制。此外,我們定義了評估量子記憶體效能的關鍵參數,並透過理論模擬與實驗數據進行比較,分析不同訊號波形對共振腔型式量子記憶體存取性能的影響。相信本文所獲結果預期可為未來量子記憶體之設計與優化提供參考,並促進其在量子通訊應用中的實用化發展。


    The rapid advancement of quantum communication has highlighted the need for quantum repeater protocols to address critical challenges such as signal attenuation and decoherence in long-distance transmission. By leveraging entanglement generation and entanglement swapping, these protocols allow intermediate nodes to share quantum correlations, thereby extending communication ranges and enabling scalable quantum information transfer. This thesis investigates memory-based quantum repeaters, with a particular emphasis on cavity-based systems as quantum memories. We examine their fundamental storage and retrieval mechanisms, define key performance metrics, and assess their efficiency through comparisons of theoretical simulations and experimental data under different signal waveforms. The findings provide insights into the design and optimization of quantum memories and contribute to advancing their practical implementation in quantum communication networks.

    摘要i Abstract iii 致謝v 目錄vii 圖目錄xi 表目錄xv 第一章緒論1 1.1量子通訊. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2量子中繼站. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3量子記憶體. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4量子記憶體參數分析. . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 第二章理論架構11 2.1光學共振腔. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1頻率域共振腔回饋. . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2共振模態. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.3時間域共振腔回饋. . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2理論模型建立. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1高斯脈衝進入共振腔動態模擬. . . . . . . . . . . . . . . . . . . 16 2.2.2高斯脈衝參數分析. . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3時間反演對稱. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.4指數上升脈衝模擬. . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.5指數上升脈衝參數分析. . . . . . . . . . . . . . . . . . . . . . . 22 2.3理論架構總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 第三章實驗架設與方法25 3.1共振腔模態量測實驗. . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1可調式雷射原理. . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2共振腔構造. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.3實驗架設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.4共振腔模態量測方法. . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.5共振腔模態測量數據. . . . . . . . . . . . . . . . . . . . . . . . 27 3.2波型變化測量實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1電光調製器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2實驗架設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.3波型變化量測方法. . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.4波型變化測量數據. . . . . . . . . . . . . . . . . . . . . . . . . . 30 第四章實驗結果與討論31 4.1共振腔模態測量結果. . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2波型變化與參數分析實驗結果. . . . . . . . . . . . . . . . . . . . . 32 4.2.1高斯脈衝波型. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 viii 4.2.2高斯脈衝參數分析. . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.3指數上升脈衝波型. . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.4指數上升脈衝參數分析. . . . . . . . . . . . . . . . . . . . . . . 35 4.2.5量子記憶體效能參數比較. . . . . . . . . . . . . . . . . . . . . . 36 第五章結果與未來展望37 5.1結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 參考文獻39

    [1] Wolfgang P Schleich, Kedar S Ranade, Christian Anton, Markus Arndt, Markus As
    pelmeyer, Manfred Bayer, Gunnar Berg, Tommaso Calarco, Harald Fuchs, Elisabeth Gi
    acobino, et al. Quantum technology: from research to application. Applied Physics B,
    122:1–31, 2016.
    [2] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital
    signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
    1978.
    [3] Zheng-Da Li, Rui Zhang, Xu-Fei Yin, Li-Zheng Liu, Yi Hu, Yu-Qiang Fang, Yue-Yang
    Fei, Xiao Jiang, Jun Zhang, Li Li, et al. Experimental quantum repeater without quantum
    memory. Nature photonics, 13(9):644–648, 2019.
    [4] Yu Ma, You-Zhi Ma, Zong-Quan Zhou, Chuan-Feng Li, and Guang-Can Guo. One-hour
    coherent optical storage in an atomic frequency comb memory. Nature communications,
    12(1):2381, 2021.
    [5] Chanchal, GP Teja, and Sandeep K Goyal. Intra-atomic frequency-comb-based photonic
    quantum memory using single-atom-cavity setup. Physical Review A, 107(1):012614,
    2023.
    [6] Erhan Saglamyurek, Jeongwan Jin, Varun B Verma, Matthew D Shaw, Francesco Marsili,
    SaeWooNam,DanielOblak,andWolfgangTittel. Quantumstorageofentangledtelecom
    wavelength photonsinanerbium-dopedopticalfibre. Nature Photonics, 9(2):83–87, 2015.
    [7] Mahmood Sabooni, Qian Li, Stefan Kröll, and Lars Rippe. Efficient quantum memory
    using a weakly absorbing sample. Physical review letters, 110(13):133604, 2013.
    [8] Pierre Jobez, Imam Usmani, Nuala Timoney, Cyril Laplane, Nicolas Gisin, and Mikael
    Afzelius. Cavity-enhanced storage in an optical spin-wave memory. New Journal of
    Physics, 16(8):083005, 2014.
    [9] Nicolas Maring, Kutlu Kutluer, Joachim Cohen, Matteo Cristiani, Margherita Mazzera,
    Patrick M Ledingham, and Hugues De Riedmatten. Storage of up-converted telecom pho
    tons in a doped crystal. New Journal of Physics, 16(11):113021, 2014.
    [10] Mustafa Gündoğan, Margherita Mazzera, Patrick M Ledingham, Matteo Cristiani, and
    HuguesdeRiedmatten. Coherent storage of temporally multimode light using a spin-wave
    atomic frequency comb memory. New Journal of Physics, 15(4):045012, 2013.
    [11] Pierre Jobez, Cyril Laplane, Nuala Timoney, Nicolas Gisin, Alban Ferrier, Philippe Gold
    ner, and Mikael Afzelius. Coherent spin control at the quantum level in an ensemble-based
    optical memory. Physical review letters, 114(23):230502, 2015.
    [12] Y-W Cho, GT Campbell, JL Everett, J Bernu, DB Higginbottom, MT Cao, J Geng,
    NP Robins, PK Lam, and BC Buchler. Highly efficient optical quantum memory with
    long coherence time in cold atoms. Optica, 3(1):100–107, 2016.
    [13] BM Sparkes, Julien Bernu, Mahdi Hosseini, Jiao Geng, Quentin Glorieux, PA Altin,
    Ping Koy Lam, NP Robins, and BC Buchler. An ultra-high optical depth cold atomic
    ensemble for quantum memories. In Journal of Physics: Conference Series, volume 467,
    page 012009. IOP Publishing, 2013.
    [14] Anthony C Leung, WY Lau, Aaron D Tranter, Karun V Paul, Markus Rambach, Ben C
    Buchler, Ping KoyLam,AndrewGWhite,andTillJWeinhold. Efficient, ever-readyquan
    tum memory at room temperature for single photons. arXiv preprint arXiv:2203.12108,
    2022.
    [15] Mahdi Hosseini, Ben M Sparkes, Geoff Campbell, Ping K Lam, and Ben C Buchler. High
    efficiency coherent optical memory with warm rubidium vapour. Nature communications,
    2(1):174, 2011.
    [16] Morgan P Hedges, Jevon J Longdell, Yongmin Li, and Matthew J Sellars. Efficient quan
    tum memory for light. Nature, 465(7301):1052–1056, 2010.
    [17] Björn Lauritzen, Ji ří Minář, Hugues de Riedmatten, Mikael Afzelius, Nicolas Sangouard,
    Christoph Simon, and Nicolas Gisin. Telecommunication-wavelength solid-state memory
    at the single photon level. Physical review letters, 104(8):080502, 2010.
    [18] Lukas Heller, Jan Lowinski, Klara Theophilo, Auxiliadora Padrón-Brito, and Hugues
    de Riedmatten. Raman storage of quasideterministic single photons generated by ryd
    berg collective excitations in a low-noise quantum memory. Physical Review Applied,
    18(2):024036, 2022.
    [19] Dong-ShengDing,WeiZhang,Zhi-YuanZhou,ShuaiShi,Guo-YongXiang,Xi-ShiWang,
    Yun-Kun Jiang, Bao-Sen Shi, and Guang-Can Guo. Quantum storage of orbital angular
    momentum entanglement in an atomic ensemble. Physical review letters, 114(5):050502,
    2015.
    [20] KF Reim, P Michelberger, KC Lee, J Nunn, NK Langford, and IA Walmsley.
    Single-photon-level quantum memory at room temperature. Physical Review Letters,
    107(5):053603, 2011.
    [21] MR Sprague, PS Michelberger, TFM Champion, DG England, J Nunn, X-M Jin,
    WS Kolthammer, A Abdolvand, P St J Russell, and IA Walmsley. Broadband single
    photon-level memory in a hollow-core photonic crystal fibre. Nature Photonics, 8(4):287
    291, 2014.
    [22] Duncan G England, Kent AG Fisher, Jean-Philippe W MacLean, Philip J Bustard, Rune
    Lausten, Kevin J Resch, and Benjamin J Sussman. Storage and retrieval of thz-bandwidth
    single photons using a room-temperature diamond quantum memory. Physical review
    letters, 114(5):053602, 2015.
    [23] DG England, PJ Bustard, J Nunn, R Lausten, and BJ Sussman. From photons to phonons
    and back: A thz optical memory in diamond. Physical review letters, 111(24):243601,
    2013.
    [24] Pierre Vernaz-Gris, Kun Huang, Mingtao Cao, Alexandra S Sheremet, and Julien Laurat.
    Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold
    atomic ensemble. Nature communications, 9(1):363, 2018.
    [25] Stefan Riedl, Matthias Lettner, Christoph Vo, Simon Baur, Gerhard Rempe, and Stephan
    Dürr. Bose-einstein condensate as a quantum memory for a photonic polarization qubit.
    Physical Review
    A—Atomic, Molecular, and Optical Physics, 85(2):022318, 2012.
    [26] Shuyu Zhou, Shanchao Zhang, Chang Liu, JF Chen, Jianming Wen, MMT Loy, George
    Ke Lun Wong, and Shengwang Du. Optimal storage and retrieval of single-photon wave
    forms. Optics express, 20(22):24124–24131, 2012.
    [27] Chien Liu, Zachary Dutton, Cyrus H Behroozi, and Lene Vestergaard Hau. Observation
    of coherent optical information storage in an atomic medium using halted light pulses.
    Nature, 409(6819):490–493, 2001.
    [28] Kyung Soo Choi, Hui Deng, Julien Laurat, and HJ Kimble. Mapping photonic entangle
    ment into and out of a quantum memory. Nature, 452(7183):67–71, 2008.
    [29] ANicolas, L Veissier, L Giner, E Giacobino, D Maxein, and J Laurat. A quantum memory
    for orbital angular momentum photonic qubits. Nature Photonics, 8(3):234–238, 2014.
    [30] B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat. Demonstration of a memory
    for tightly guided light in an optical nanofiber. Physical review letters, 114(18):180503,
    2015.
    [31] Yi-Hsin Chen, Meng-Jung Lee, I-Chung Wang, Shengwang Du, Yong-Fan Chen, Ying
    Cheng Chen, and Ite A. Yu. Coherent optical memory with high storage efficiency and
    large fractional delay. Physical review letters, 110(8):083601, 2013.
    [32] ZhongxiaoXu,YuelongWu,LongTian,LirongChen,ZhiyingZhang,ZhihuiYan,Shujing
    Li, Hai Wang, Changde Xie, and Kunchi Peng. Long lifetime and high-fidelity quantum
    memory of photonic polarization qubit by lifting zeeman degeneracy. Physical review
    letters, 111(24):240503, 2013.
    [33] U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and
    I. Bloch. Electromagnetically induced transparency and light storage in an atomic mott
    insulator. Physical review letters, 103(3):033003, 2009.
    [34] YO Dudin, L Li, and A Kuzmich. Light storage on the time scale of a minute. Physical
    Review
    A—Atomic, Molecular, and Optical Physics, 87(3):031801, 2013.
    [35] Rui Zhang, Sean R Garner, and Lene Vestergaard Hau. Creation of long-term coherent
    optical memory via controlled nonlinear interactions<? format?> in bose-einstein conden
    sates. Physical Review Letters, 103(23):233602, 2009.
    [36] Kai-I Chu, Xiao-Cheng Lu, Kuan-Hsun Chiang, Yen-Hsiang Lin, Chii-Dong Chen, Ite A
    Yu, Wen-Te Liao, and Yung-Fu Chen. Slow and stored light via electromagnetically
    induced transparency using a λ-type superconducting artificial atom. Physical Review
    Research, 7(1):L012015, 2025.
    [37] Irina Novikova, Alexey V Gorshkov, David F Phillips, Anders S Sørensen, <? format?>
    Mikhail D Lukin, and Ronald L Walsworth. Optimal control of light pulse storage and
    retrieval. Physical Review Letters, 98(24):243602, 2007.
    [38] Lixia Ma, Xing Lei, Jieli Yan, Ruiyang Li, Ting Chai, Zhihui Yan, Xiaojun Jia, Changde
    Xie, and Kunchi Peng. High-performance cavity-enhanced quantum memory with warm
    atomic cell. Nature communications, 13(1):2368, 2022.
    [39] Nathaniel B Phillips, Alexey V Gorshkov, and Irina Novikova. Optimal light stor
    age in atomic vapor. Physical Review
    78(2):023801, 2008.
    A—Atomic, Molecular, and Optical Physics,
    [40] Daniel Schraft, Marcel Hain, Nikolaus Lorenz, and Thomas Halfmann. Stopped light at
    high storage efficiency in a pr 3+: Y2sio5crystal. Physicalreviewletters, 116(7):073602,
    2016.
    [41] Jevon J Longdell, Elliot Fraval, Matthew J Sellars, and Neil B Manson. Stopped light
    with storage times greater than one second<? format?> using electromagnetically induced
    transparency in a solid. Physical review letters, 95(6):063601, 2005.
    [42] GeorgHeinze, Christian Hubrich, and ThomasHalfmann. Stoppedlightandimagestorage
    by electromagnetically induced transparency<? format?> up to the regime of one minute.
    Physical review letters, 111(3):033601, 2013.
    44
    [43] Ya-Fen Hsiao, Pin-Ju Tsai, Hung-Shiue Chen, Sheng-Xiang Lin, Chih-Chiao Hung, Chih
    Hsi Lee, Yi-Hsin Chen, Yong-Fan Chen, Ite A Yu, and Ying-Cheng Chen. Highly efficient
    coherent optical memory based on electromagnetically induced transparency. Physical
    review letters, 120(18):183602, 2018.
    [44] ErwanBimbard,RajivBoddeda,NicolasVitrant, AndreyGrankin, ValentinaParigi, Jovica
    Stanojevic, AlexeiOurjoumtsev, andPhilippeGrangier. Homodynetomographyofasingle
    photon retrieved on demand from a cavity-enhanced cold atom memory. Physical Review
    Letters, 112(3):033601, 2014.
    [45] R Zhao, YO Dudin, SD Jenkins, CJ Campbell, DN Matsukevich, TAB Kennedy, and
    AKuzmich. Long-lived quantum memory. Nature Physics, 5(2):100–104, 2009.
    [46] Xiao-Hui Bao, Andreas Reingruber, Peter Dietrich, Jun Rui, Alexander Dück, Thorsten
    Strassel, Li Li, Nai-Le Liu, Bo Zhao, and Jian-Wei Pan. Efficient and long-lived quantum
    memory with cold atoms inside a ring cavity. Nature Physics, 8(7):517–521, 2012.
    [47] DLMcAuslan,PatrickMLedingham,WilliamRNaylor, SEBeavan,MPHedges,MJSel
    lars, and Jevon Joseph Longdell. Photon-echo quantum memories in inhomogeneously
    broadened two-level atoms. Physical Review
    84(2):022309, 2011.
    A—Atomic,Molecular,andOpticalPhysics,
    [48] MM Minnegaliev, KI Gerasimov, RV Urmancheev, SA Moiseev, T Chanelière, and
    A Louchet-Chauvet. Realization of the revival of silenced echo (rose) quantum mem
    ory scheme in orthogonal geometry. In AIP Conference Proceedings, volume 1936. AIP
    Publishing, 2018.
    [49] Julián Dajczgewand, Jean-Louis Le Gouët, Anne Louchet-Chauvet, and Thierry
    Chanelière. Large efficiency at telecom wavelength for optical quantum memories. Optics
    letters, 39(9):2711–2714, 2014.
    [50] Sarah E Thomas, Lukas Wagner, Raphael Joos, Robert Sittig, Cornelius Nawrath, Paul
    Burdekin, Ilse Maillette de Buy Wenniger, MikhaelJRasiah, TobiasHuber-Loyola, Steven
    Sagona-Stophel, et al. Deterministic storage and retrieval of telecom light from a quantum
    dot single-photon source interfaced with an atomic quantum memory. Science Advances,
    10(15):eadi7346, 2024.
    [51] Philip J Bustard, Ramy Tannous, Kent Bonsma-Fisher, Daniel Poitras, Cyril Hnatovsky,
    Stephen J Mihailov, Duncan England, and Benjamin J Sussman. Toward determinis
    tic sources: Photon generation in a fiber-cavity quantum memory. Physical Review A,
    109(1):013711, 2024.
    [52] Jun-ichi Yoshikawa, Kenzo Makino, Shintaro Kurata, Peter van Loock, and Akira Furu
    sawa. Creation, storage, and on-demand release of optical quantum states<? format?>
    with a negative wigner function. Physical Review X, 3(4):041028, 2013.
    [53] Yu Guo, Anindya Banerji, Jia Boon Chin, Arya Chowdhury, and Alexander Ling. Highly
    efficient and broadband optical delay line towards a quantum memory. arXiv preprint
    arXiv:2509.02096, 2025.
    [54] Michael Brown-Hayes, Qun Wei, W J Kim, and Roberto Onofrio. Development of an
    apparatus for cooling 6 li-87 rb fermi-bose mixtures in a light-assisted magnetic trap. Laser
    physics, 17:514–522, 2007.
    [55] Mark Halpern. Exploring an optical cavity a two-week lab. UBC Physics Astronomy,
    2021.
    [56] Xinyu Zhang, Rui Li, Xiaotian Zhang, and Haibin Wu. Propagation dynamics of a
    wavepacket through an optical cavity. Optics Express, 24(3):2383–2390, 2016.
    [57] GonzaloHernández. Fabry-perot interferometers. Number 3. Cambridge University Press,
    1988.
    [58] Jae Yong Lee and Hai-Woong Lee Won Hahn. Time domain study on cavity ring-down
    signals fromafabry-perotcavityunderpulsedlaserexcitations. Japanesejournalofapplied
    physics, 38(11R):6287, 1999.
    [59] Y-T Cheng, C-H Chien, K-M Hsieh, Y-H Huang, PY Wen, W-J Lin, Y Lu, F Aziz, C-P
    Lee, K-T Lin, et al. Tuning atom-field interaction via phase shaping. Physical Review A,
    109(2):023705, 2024.
    [60] W-JLin, YLu, PYWen,Y-TCheng,C-PLee,K-TLin,K-HChiang,MCHsieh,JCChen,
    C-S Chuu, et al. Deterministic loading and phase shaping of microwaves onto a single
    artificial atom. arXiv preprint arXiv:2012.15084, 2020.

    QR CODE
    :::