跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱榮慶
Jung-Ching Chiu
論文名稱: 並聯通用型陷波濾波器應用於高轉速磁浮軸承控制器開發
指導教授: 董必正
Pi-Cheng Tung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 115
中文關鍵詞: 磁浮軸承通用型陷波濾波器自我平衡控制轉子質心不平衡
外文關鍵詞: Active magnetic bearing, Generalized notch filter, Auto-balance control, Rotor center of mass imbalance
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出對磁浮軸承控制理論實現,以商用磁浮軸承平台做為開發硬體,利用設計強健之比例微分(Proportional-Derivative)控制器將磁浮軸承浮起並且運轉,當運轉至某轉速時導入消除離心力之控制演算法,也就是將通用型陷波濾波器導入控制系統中,最後將某頻率之偏心量消除,實現磁浮軸承自我平衡。
    處理器方面以德州儀器(TI)所生產之晶片TMS320F28335數位訊號處理器作為磁浮軸承之核心處理器,利用位置感測器將磁浮平台之轉子位置回授至處理器,進行控制演算法運算後,輸出控制力至電磁線圈進行磁浮。


    This thesis is mainly concerned with the implementation of control algorithm the active magnetic bearing. In the development of hardware part, we use the commercial active magnetic bearing platform, and design a robustness Proportional- Derivative controller. Then the rotor is levitated and run by the PD controller. When the operation speed reaches the target, we implement the control algorithm to eliminate the centrifugal force, that is, the generalize notch filter compensator is used to the control system. Finally we eliminate the centrifugal force, and realize the active magnetic bearing auto-balance.
    The TMS320F28335 digital signal processor is used as the core processor of active magnetic bearing. The position sensor signal is fed back to the TMS28335, after the control algorithm operation, the TMS28335 outputs the control current to electromagnetic coil and executes the magnetic levitation.

    摘要 VI Abstract VII 目錄 VIII 圖目錄 XI 表目錄 XVI 符號說明 XVII 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻回顧 2 1.3論文架構 4 第二章 磁浮軸承控制系統之硬體架構介紹 6 2.1前言 6 2.2 TMS320F28335數位訊號處理器簡介 7 2.3磁浮軸承控制系統之硬體電路及元件簡介 9 第三章 磁浮軸承介紹 25 3.1前言 25 3.2磁路分析 26 3.3磁力分析 29 3.4磁路線性化 31 第四章 系統模擬 33 4.1前言 33 4.2磁浮軸承數學模型 34 4.3系統鑑別 37 4.4比例微分(PD)控制系統模擬 43 第五章 控制器設計 45 5.1前言 45 5.2比例微分(PD)控制器介紹 46 5.3控制迴路架構 48 5.4通用型陷波濾波器設計 49 5.5陷波濾波器穩定度分析 54 5.6並聯通用型陷波濾波器模擬 62 第六章 實驗平台與實作結果 65 6.1前言 65 6.2硬體架構 66 6.3數位訊號處理器之程式規劃流程 70 6.4 PD控制器實驗 72 6.5並聯通用型陷波濾波器實驗 75 第七章 結論與未來展望 93 參考文獻 94

    [1]S. Earnshaw. “On the nature of the molecular forces which regulate the constitution of the lumiferous ether, ” Trans. Camb. Phil. Soc., 7, Part I:97–112, 1842.
    [2]C. R. Burrows, M. N. Sahinkaya, “Vibration control of multi-mode rotor-bearing systems,” Proc. R. Soc. Lond., A, Math. Phys. Sci., vol. 386, pp. 77–94, 1983.
    [3]R. Beatty., “Notch Filter Control of Magnetic Bearings to Improve Rotor Synchronous Response,” MIT, Master's Thesis, May 1988
    [4]Knospe, C.R., “Stability and Performance of Notch Filter Control for Unbalance Response,” NASA Int. Symp. Magnetic Suspension Technology, NASA Conf. Pub. 3152 Hampton, VA, Aug , 1991.
    [5]R. Herzog, P. Bühler, C. Gähler, and R. Larsonneur, “Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings,” IEEE Trans. Control Syst. Technol., vol. 4, no. 5, pp. 580–586, Sep. 1996.
    [6]Z. Shiqiang, C. Qi, R. Hongliang, “Active Balancing Control of AMB-Rotor Systems Using a Phase-Shift Notch Filter Connected in Parallel Mode,” IEEE Trans. Ind. Electron., vol. 63, no. 6, Jun. 2016.
    [7] R. J. Madden and J. T. Sawicki, “Rotor Model Validation for an Active Magnetic Bearing Machining Spindle Using mu-Synthesis Approach”, ASME J. Eng. Gas Turbines Power vol. 134(9), 092501 Sep. 18, 2012.
    [8]ADI,“AD7609 Datesheet”,2010.
    [9]Texas Instruments,“SN74LVTH162245 Datesheet”,2006.
    [10]Texas Instruments,“TLV5614” ,2003.
    [11]劉陵順,TMS320F28335DSP原理及開發編程,北京航空航天大學出版社,北京,民國100年。
    [12]符曉,TMS320D2833x DSP 應用開發與實踐,北京航空航天大學出版社,北京,民國102年。
    [13]TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, MS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data Manual, Texas Instruments, June 2007.
    [14]G. Schweitzer, E. Maslen, “Magnetic Bearings- Theory, Design and Apply to Rotating Machinery,” Springer, 2009.
    [15]J. Setiawan, R. Mukherjee, “Adaptive Compensation of Sensor Runout and Mass Unbalance in Magnetic Bearing Systems,” IEEE Int. Conf. on AIM, pp. 800-805, 1999.
    [16]蒋科坚、祝长生,“基于不平衡识别的主动电磁轴承转子系统自动平衡”,振动工程学报, Vol. 22, No. 6, pp.559-564, 2009年。
    [17]孙岩桦、罗岷、虞烈,“基于自适应陷波器的电磁轴承不平衡补偿方法”,振动工程学报,Vol.13, No.4, pp.611-615, 2000年。
    [18]陳兆芸、林宗憲、王登茂、蘇崇賢,“磁浮軸承控制與轉子不平衡抑制探討”,國立勤益科技大學,綠能科技工程與應用研討會,台灣,2013。
    [19]黃昭銘,“參數自我調整控制於非線性磁浮軸承系統之應用”,國立中央大學,碩士論文,民國84年。
    [20]黃松鶴,“磁浮軸承之非線性控制”,國立中央大學,碩士論文,民國90年。
    [21]葉品良,“智慧型運動控制器之研發”,國立中央大學,碩士論文,民國104年。
    [22]陳瑄易,“利用智慧型滑動模式之五軸主動式磁浮軸承控制系統”,國立中央大學,博士論文,民國99年。
    [23] ISO 14839-2, Mechanical vibration—Vibration of rotating machinery equipped with active magnetic bearings—Part2: Evaluation of vibration.

    QR CODE
    :::