跳到主要內容

簡易檢索 / 詳目顯示

研究生: 東單安
Khuc Thanh Dong
論文名稱: 應用地面測站及衛星觀測之氣膠光學厚度估算越南河內地區PM2.5
Estimating Particulate Matter (PM2.5) from Aerosol Optical Depth based on ground-based station and satellite observations in Hanoi, Vietnam
指導教授: 林唐煌
Tang-Huang Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 太空及遙測研究中心 - 遙測科技碩士學位學程
Master of Science Program in Remote Sensing Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 74
中文關鍵詞: 空氣污染、PM2.5、氣膠光學厚度、氣膠種類、正規化氣膠指數 (NGAI)、相對溼度
外文關鍵詞: Air pollution; PM2.5; Aerosol optical depth; Aerosol type; NGAI; Relative humidity
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空氣污染(大氣氣膠)對全球所造成的影響已成為現今重要的議題,除氣候變遷外,前人研究顯示〖PM〗_2.5對人類的健康有顯著的影響,空氣污染的監測因此重要。地面〖PM〗_2.5測站能精準的評估空氣污染,但常受限於測站的空間分佈,因此本研究使用AERONET的氣膠光學厚度(aerosol optical depth, AOD)及〖PM〗_2.5 測站資料,並根據沙塵(DS)、人為污染(AP)及生質然燒(BB)等氣膠種類來建立AOD及〖PM〗_2.5的關係式,應用於衛星監測以克服地面測站之限制。除氣膠種類外,本研究亦進一步考慮相對濕度對AOD及〖PM〗_2.5關係式的影響。結果顯示不同種類AOD及〖PM〗_2.5的相關係數在使用NGAI(Normalized Gradient Aerosol Index)進行氣膠種類分類後,相關係數分別改進為0.815(DS) 、0.693(AP)及0.741(BB), 加入相對濕度後則可提昇至0.853(DS)、0.707(AP)及0.768(BB)。最後將研究所建立的關係式應用至MODIS的AOD產品進行〖PM〗_2.5濃度之估算,在時間與空間的分布上均獲得不錯之結果,顯示本研究所建構之AOD及〖PM〗_2.5濃度在衛星反演〖PM〗_2.5濃度具相當的實用價值。


    Air pollution is a hot issue caused serious problems all around the world. Previous studies have shown that PM2.5 concentrations have a strong influence on human health. PM2.5 ground-based stations are appropriate to evaluate air pollution with high accuracy but typically limited in spatial distribution. This study used AOD from AERONET stations and PM2.5 concentrations within study area to representing 3 types of aerosols: dust (DS), anthropogenic pollutants (AP) and biomass burning (BB) to build relationships between AOD and PM2.5 concentrations. In addition, the study figures the relative humidity effect on the relationship between AOD and PM2.5 concentrations. The results show that the correlation coefficient between AERONET AOD and PM2.5 concentrations were 0.6, 0.652 and 0.729 for DS, AP, and BB source region respectively. After NGAI (Normalized Gradient Aerosol Index) method applied, the correlation coefficient improved to 0.815, 0.693 and 0.741 for DS, AP, and BB, respectively. The correlation coefficient became as high as 0.853, 0.707 and 0.768 for DS, AP, and BB, respectively after considering RH correction. Then, the linear regression method was used to calibrate spectral AODs of MODIS before applying to the estimation of PM2.5 concentration based on spectral AODs of AERONET. The results demonstrate the potential of satellite observation to estimating the concentration and characteristics of PM2.5 concentrations after comparing the ground-based measurements.

    TABLE OF CONTENTS ABSTRACT I LIST OF FIGURES VI LIST OF TABLES IX CHAPTER 1: INTRODUCTION 1 CHAPTER 2: LITERATURE REVIEW 9 2.1. Ground-based PM2.5 measurement 9 2.2. Aerosol Optical Depth 12 2.2.1. AOD ground-based measurement 12 2.2.2. AOD Satellite data 14 2.3. The relationship between Aerosol Optical Depth and PM2.5 15 CHAPTER 3: METHODOLOGY 18 3.1 . Retrieval AOD MODIS over Hanoi area 19 3.2. Establish relationships between AOD AERONET and PM2.5 20 3.2.1. Effect of aerosol- type on the AOD-PM2.5 relationship 22 3.2.2. Effect of relative humidity and relative humidity correction. 26 CHAPTER 4: DATA COLLECTION 28 4.1. AOD AERONET data 29 4.2. PM2.5 and Relative Humidity 29 4.3. MODIS AOD 31 CHAPTER 5: RESULT AND DISCUSSION 32 5.1. Evaluation MODIS Aerosol Optical Depth retrieved 32 5.1.1. Compare between AOD MODIS and AOD AERONET 32 5.1.2. AOD seasonal distribution 35 5.1.3. Calibrate AOD MODIS base on AOD AERONET over Hanoi 38 5.2. Aerosol types classification 39 5.3. The relationship between AOD and PM2.5 41 5.4. Application on satellite AOD 45 5.4.1 Validation MODIS PM2.5 with PM2.5 of the independent ground-based station 46 5.4.2. PM2.5 retrieval and aerosol classification 48 5.4.3. PM2.5 Seasonal distribution 51 CHAPTER 6: CONCLUTION AND FUTURE WORK 53 6.1. Conclusion 53 6.2. Future work 54 REFERENCES 55

    REFERENCES
    Boselli, A., R. Caggiano, C. Cornacchia, F. Madonna, L. Mona, M. Macchiato, G. Pappalardo, and S. Trippetta (2012), Multi year sun-photometer measurements for aerosol characterization in a Central Mediterranean site, Atmospheric Research, 104, 98-110.
    Claudio Tomasi, Sandro Fuzzi, and A. Kokhanovsky (2016), Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate.
    Du, Y., X. Xu, M. Chu, Y. Guo, and J. Wang (2016), Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence, J Thorac Dis, 8(1), E8-E19.
    Eck, T. F., et al. (2005), Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J Geophys Res-Atmos, 110(D6).
    Engel-Cox, J. A., C. H. Holloman, B. W. Coutant, and R. M. Hoff (2004), Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality, Atmospheric Environment, 38(16), 2495-2509.
    Fu, D., X. Xia, J. Wang, X. Zhang, X. Li, and J. Liu (2018), Synergy of AERONET and MODIS AOD products in the estimation of PM2.5 concentrations in Beijing, Sci Rep, 8(1), 10174.
    Gatari, M., A. Wagner, and J. Boman (2005), Elemental composition of tropospheric aerosols in Hanoi, Vietnam and Nairobi, Kenya, Sci Total Environ, 341(1-3), 241-249.
    Green, M., S. Kondragunta, P. Ciren, and C. Y. Xu (2009), Comparison of GOES and MODIS Aerosol Optical Depth (AOD) to Aerosol Robotic Network (AERONET) AOD and IMPROVE PM2.5 Mass at Bondville, Illinois, Journal of the Air & Waste Management Association, 59(9), 1082-1091.
    Hai, C. D., and N. T. K. Oanh (2013), Effects of local, regional meteorology and emission sources on mass and compositions of particulate matter in Hanoi, Atmospheric Environment, 78, 105-112.
    Hauser, A., D. Oesch, and N. Foppa (2005), Aerosol optical depth over land: Comparing AERONET, AVHRR and MODIS, Geophysical Research Letters, 32(17).
    Hu, D. W., L. P. Qiao, J. M. Chen, X. N. Ye, X. Yang, T. T. Cheng, and W. Fang (2010), Hygroscopicity of Inorganic Aerosols: Size and Relative Humidity Effects on the Growth Factor, Aerosol and Air Quality Research, 10(3), 255-264.
    Huang, C.-H. (2007), Field Comparison of Real-Time PM2.5 Readings from a Beta Gauge Monitor and a Light Scattering Method, 239-250 pp.
    Hutchison, K. D., S. J. Faruqui, and S. Smith (2008), Improving correlations between MODIS aerosol optical thickness and ground-based PM2.5 observations through 3D spatial analyses, Atmospheric Environment, 42(3), 530-543.
    Karagulian, F., C. Belis, F. Lagler, M. Barbiere, and M. Gerboles (2012), Evaluation of a portable nephelometer against the Tapered Element Oscillating Microbalance method for monitoring PM2.5, 2145-2153 pp.
    Lee, B. J., B. Kim, and K. Lee (2014), Air pollution exposure and cardiovascular disease, Toxicol Res, 30(2), 71-75.
    Li, B. G., H. S. Yuan, N. Feng, and S. Tao (2009), Comparing MODIS and AERONET aerosol optical depth over China, International Journal of Remote Sensing, 30(24), 6519-6529.
    Li, J., Z. Han, and R. Zhang (2014), Influence of aerosol hygroscopic growth parameterization on aerosol optical depth and direct radiative forcing over East Asia, 14–27 pp.
    Li, R., R. Zhou, and J. Zhang (2018), Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases, Oncol Lett, 15(5), 7506-7514.
    Li, T., H. Shen, and L. Zhang (2016), Mapping PM2.5 distribution in China by fusing station measurements and satellite observation, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 5761-5764.
    Li, T. W., H. F. Shen, C. Zeng, Q. Q. Yuan, and L. P. Zhang (2017), Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment, Atmospheric Environment, 152, 477-489.
    Lin, T. H., G. R. Liu, and C. Y. Liu (2016), A Novel Index for Atmospheric Aerosol Types Categorization with Spectral Optical Depths from Satellite Retrieval, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 277-279.
    Liu, Y., J. A. Sarnat, A. Kilaru, D. J. Jacob, and P. Koutrakis (2005), Estimating ground-level PM2.5 in the eastern united states using satellite remote sensing, Environmental Science & Technology, 39(9), 3269-3278.
    Mariano, G. L., F. Lopes, M. Jorge, and E. Landulfo (2010), Assessment of biomass burnings activity with the synergy of sunphotometric and LIDAR measurements in São Paulo, Brazil, 486-499 pp.
    McPhetres, A., and S. Aggarwal (2018), An Evaluation of MODIS-Retrieved Aerosol Optical Depth over AERONET Sites in Alaska, Remote Sensing, 10(9).
    NASA (2013a), National Aeronautics and Space Administration, MODIS product description. http://modis-atmos.gsfc.nasa.gov/MOD04_L2/.
    Paciorek, C. J., Y. Liu, H. Moreno-Macias, and S. Kondragunta (2008), Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5, Environmental Science & Technology, 42(15), 5800-5806.
    Remer, L. A., et al. (2005), The MODIS aerosol algorithm, products, and validation, Journal of the Atmospheric Sciences, 62(4), 947-973.
    Saksena, S., P. V. Luong, D. D. Quan, P. T. Nhat, D. T. Tho, and T. N. Quang (2006), Commuters' exposure to particulate matter and carbon monoxide in Hanoi, Vietnam: a pilot study, 1-33 pp.
    Tao, J. H., M. G. Zhang, L. F. Chen, Z. F. Wang, L. Su, C. Ge, X. Han, and M. M. Zou (2013), A method to estimate concentrations of surface-level particulate matter using satellite-based aerosol optical thickness, Sci China Earth Sci, 56(8), 1422-1433.
    V. Martonchik, J., D. J. Diner, R. Kahn, B. J. Gaitley, and B. Holben (2004), Comparison of MISR and AERONET aerosol optical depths over desert sites.
    Wang, J., and S. A. Christopher (2003), Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies, Geophysical Research Letters, 30(21).
    Zheng, C. W., C. F. Zhao, Y. N. Zhu, Y. Wang, X. Q. Shi, X. L. Wu, T. M. Chen, F. Wu, and Y. M. Qiu (2017), Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing, Atmospheric Chemistry and Physics, 17(21), 13473-13489.

    QR CODE
    :::