| 研究生: |
夏漢權 Han-Chiuan Hsia |
|---|---|
| 論文名稱: |
以Heston model隨機波動度模型評價結構型商品與目標可贖回遠期契約 Using Heston Model to Evaluate Equity Linked Note and Target Redemption Forward |
| 指導教授: |
吳庭斌
Ting-Pin Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系 Department of Finance |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | Heston模型 、參數校準 、蒙地卡羅模擬 |
| 外文關鍵詞: | Heston model, Calibration, Monte Carlo simulations |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文採用Heston (1993)發表之隨機波動度模型評價台指結構型商品與兩檔TRF,並對於模型之操作過程詳細說明。在參數校準上,利用最小平方法建立誤差函數,並使用價外買權與價外賣權共同建構隱含波動度曲線;本文亦採用歷史資料估計之相關係數來取代原先欲校準之模型參數rho,結果發現,在台指選擇權之校準中,能在不損失太多誤差下提升校準效率。本文後續針對台指選擇權、日圓兌美元選擇權、歐元兌美元選擇權之校準狀況作分析,並進一步觀察選擇權在不同到期日下,校準參數與隱含波動度曲線之關係;接著分析2016年發生之大事件對於參數校準造成之影響。最後,利用蒙地卡羅模擬法分析三種商品在BS模型與Heston模型模擬下的差異,結果發現在不同分配假設下,兩種模型模擬結果差異甚大。後續比較尤拉法切割期數對模擬產生之影響,研究發現,在模擬切割期數不同下結果會有些微差異,但考慮模擬效率下一天切割一期即為足夠。
The paper adopts the stochastic volatility model of Heston (1993) to evaluate equity linked note and target redemption forwards, and illustrates the operating step of model in detail. In the thesis, I use the least square method to calibrate parameters, and use out of the money calls and out of the money puts to build implied volatility curves. I also find that after replacing the correlation parameters with new correlation parameters estimated by historical data, the error of calibration slightly increases with improving the efficiency of calibration in TAIEX options. And then, I analyze the correlation between implied volatility curves and parameters in different maturities and different assets, namely TAIEX options, EUR/USD options and JPY/USD options. I also examine that how big events in 2016 affect my calibration results. In order to evaluate equity linked note and target redemption forwards, I perform Monde-Carol simulation to compare between BS Model and Heston Model to search if there is any difference between those popular option pricing theories, the discovery is that the winning probability of BS and Heston model are not the same because of its basic assumption. Last but not the least, I adopt Euler-method to distinguish different time space of simulation, and find that there is little difference between different time spaces.
參考文獻
1. Albrecher et al. (2007)., “The Little Heston Trap”. Wilmott Magazine, January Issue, 83-92
2. Bates, D. S. (1996), “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options,” The Review of Finance Study ,9(1),69-107
3. Black, F., and M. Scholes, (1973), “The Valuation of Options and Corporate Liabilities,” Journal of Political Economy, 81, 637-654.
4. Boyle, P. (1977). “Options: A Monte Carlo Approach.” Journal of Financial Economics, 4, 323-338
5. Cox, J. C., and S. A. Ross, (1976), “The Valuation of Options for Alternative Stochastic Processes,” Journal of Financial Economics,3, 145-166.
6. Cox, J. C., J. E. Ingersoll, and S. A. Ross, (1985), “A Theory of the Term Structure of Interest Rate,” Econometrica, 53(2), 385-407.
7. Heston S. L. (1993), “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options”, The Review of Financial Studies, 6,327-343.
8. Hull, J.C., and A. White, (1987), “The Pricing of Options on Assets with Stochastic Volatilities,” Journal of Finance, 42, 281-300.
9. Knoch H. J. (1992), “The pricing of Foreign Currency Options with Stochastic Volatility,” Ph.D. Dissertation, Yale School of Organization and Management.
10. Manaster, S. and Koehler, G. (1982). “The calculation of implied volatility from the Black-Scholes model: A note.”, Journal of Finance, 38(1), 227-230.
11. Melino A. and Turnbull S.M. (1990), “Pricing Foreign Currency Options with Stochastic Volatility. Journal of Econometrics.” ,45, 239-265.
12. Mikhailov S. and N¨ogel U. (2003), “Heston’s Stochastic Volatility Model Implementation, Calibration and Some Extensions.” Wilmott magazine, 74-79.
13. Moodley, N. (2005). The Heston model: A practical approach with Matlab code. Bachelor Thesis, University of the Witwatersrand, Johannesburg, math. nyu. edu.
14. Nofsinger, John R. and Brian Prucyk(2003), “Option Volume and Volatility Response to Scheduled Economic News Releases.” ,The Journal of Futures Markets,23,315-345.
15. Rouah F. D. (2013), “The Heston Model and its Extensions in Matlab and C#”, John Wiley & Sons Inc., New York.
16. Rubinstein, M., (1985), “Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978”. The Journal of Finance, 40(2), 455-480
17. Scott, L.O. (1987), “Option pricing when the variance changes randomly: theory, estimation, and an application.” Journal of Financial and Quantitative Analysis 22, 419-438.
18. Stein, E.M., and J. C. Stein, (1991), “Stock Price Distributions with Stochastic Volatility: An Analytic Approach,” Review of Financial Studies, 4, 727-752.
19. Wiggins, J. B. (1987), “Option values under stochastic volatility: theory and empirical estimates.” Journal of Financial Economics 19, 351-377.
20. Wu, G., (2001), “The determinant of asymmetric volatility”, Review of Financial Studies, 14, 837-859
21. Yeh, Y. H. & Lee, T. S. (2000). “The interaction and volatility asymmetry of unexpected returns in the greater China stock markets”, Global Finance Journal, 11,129-149