| 研究生: |
林俊宏 Jin-Hung Lin |
|---|---|
| 論文名稱: |
粉體在不同含水量及乾單位重下之熱傳導係數 |
| 指導教授: |
田永銘
Yong-Ming Tien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 粉體 、微觀力學模式 、熱傳導係數 、熱探針連續量測法 |
| 外文關鍵詞: | Powder, Continuous heat probe method, Thermal conductivity, Micromechanics models |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文進行多種粉體、渥太華砂-B.H. Bentonite與花崗岩碎石-日興土兩種複合土體熱傳導係數的量測。在粉體部分,以乾單位重與含水量為控制變數;在複合土體部分,以顆粒材料重量比為控制變數。量測方法乃採用張大猶(2004)所提出之熱探針連續量測法,此方法可消除熱探針與試體間接觸界面不均勻、減少試驗材料與時間、降低材料變異性等優點。另外,本文提出一套系統性方法,以決定各種粉體之McInnes’ model參數值,並將McInnes’ model參數與土壤物理性質建立關係,得到Modified McInnes’ model。在複合土體部分,以微觀力學模式進行其熱傳導係數的預測,並與實驗值作比較,以了解各預測模式之優劣情況。
This study carries on the measurement of thermal conductivity of several kinds of powders, sand-B.H. Bentonite composite and Crushed granite-Z.H. Bentonite composite. On measuring powders, dry unit weight and water content are the controlled variables. For the composites, the controlled variable is the weight ratio of inclusions. And measurement method adopts continuous heat probe method proposed by Chang(2004). It avoids the surface contact problems inhibited in ASTM D5334 method and the individual differences of measurement from different specimens. In addition, this study proposes a set of systematical methods in order to determine various kinds of powder for McInnes’ model parameters. The McInnes’ model parameters are investigated to set up the relationship with physical properties of soils and transferred into Modified McInnes’ model. For the composites, the thermal conductivities are predicted by micromechanics models, and results are compared with experimental values to know the differences of each model.
1.田永銘,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(I)」,行政院原子能委員會委託研究計畫研究報告,912001INER006,
台北(2001)。
2.田永銘,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(II)」,行政院原子能委員會委託研究計畫研究報告,912001INER020,
台北(2002)。
3.田永銘、朱正安、張大猷,「緩衝材料熱傳導係數之量測與預測模式」,2004岩盤工程研討會論文集,台北(2004)。
4.簡城宗,「複合土體熱傳導性質之初步研究」,碩士論文,國立中央大學土木工程研究所,中壢(1996)。
5.劉俊志,「膨潤土與花崗岩碎石混合材料之熱傳導係數」,碩士論文,國立中央大學土木工程研究所,中壢(2003)。
6.張大猷,「熱探針連續量測法應用於緩衝材料熱傳導係數之量測與分析」,碩士論文,國立中央大學土木工程研究所,中壢(2004)。
7. 王永明,「以微分模式探求多相複合材料之力學性質」,碩士論文,國立成功大學土木工程研究所,台南(1982).
8.吳柏林,「放射性廢料處置場中砂-皂土混合緩衝材料之壓實性質」,博士論文,國立中央大學土木工程研究所,中壢(2005)。
9. Agilent Technologies, Inc., “Agilent 344970A data acquisition/switch unit,” 3rd Ed., U.S.A. (1999).
10. ASTM, “ASTM D5334 : Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure,” Annual Book of ASTM Standards, Vol. 0409, (2000).
11. Abu-Hamdeh, N.H., Khdair, A.I., Reeder, R.C.,“A comparison of two method used to evaluate thermal conductivity for some soils,”International Journal of Heat and Mass Transfer, Vol. 44, pp. 1073-1078 (2001).
12. Bouguerra, A., Laurent, J.P., Goual, M.S., Queneudec, M.,“The measurement of the thermal conductivity of solid aggregates using the transient plane source technique,”Journal of Physics, Vol. 30, pp. 2900-2904 (1997).
13. Campbell, G. S., Soil Physics With Basic Transport Models for Soil-
Plant Systems, Elsevier, New York (1985).
14. Chen, Yongping, Shi, Mingheng,“Study on effective thermal conductivity for porous media using fractal techniques,”Heat Transfer-Asian Research, Vol. 29, pp. 491-497 (2000).
15. Engelhardt, I., Finsterle, S., “Thermal-hydraulic experiments with bentonite/crushed rock mixtures and estimation of effective parameters by inverse modeling,”Applied Clay Science, Vol. 23, pp. 111-120 (2003).
16. Farouki, O.T., Thermal Properties of Soils, Series on Rock and Soil Mechanics, Vol. 11, Trans Tech Publications, Germany (1986).
17. Gustafsson, S E,“Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials,”Rev. Sci. Instrum., Vol. 62, pp. 797-804 (1990).
18. Gori, F., Corasaniti, S.,“Theoretical prediction of the soil thermal conductivity at moderately high temperatures,”Journal of Heat Transfer, Vol. 124, pp. 1001-1008 (2002).
19. Incropera, F.P., DeWitt, D.P., Fundamentals of Heat and Mass Transfer, 4th Ed., John Wiley & Sons, Inc., New York, pp. 44-55 (1996).
20. McInnes, K.,“Thermal conductivities of soils from dryland wheat regions in Easter Washington,”MSc thesis, Washington State University.
21. Ould-Lahoucine, C., Sakashita, H., Kumada, T., “Measurement of thermal conductivity of buffer materials and evaluation of existing correlations predicting it,” Nuclear Engineering and Design, Vol. 216, pp. 1-11 (2002).
22. Radhakrishna, H. S., Chan, H. T., Crawford, A. M., and Lau, K. C.,“Thermal and physical properties of candidate buffer-backfill material for a nuclear fuel waste disposal vault,”Canadian Geotechnical Journal, Vol. 26, pp.629-639(1989).
23. Salomone, L. A., Kovacs, W. D., Kusuda, T.,“Thermal performance of fine-grained soils, Journal of Geotechnical Engineering, Vol. 110, pp. 359-374 (1984).
24. Tavman, I.H., “Effective thermal conductivity of granular porous materials,” International Communications in Heat and Mass Transfer, Vol. 23, pp. 169-176 (1996).
25. Tarnawski, V. R., Gori, F., Wagner, B., Buchan, G. D.,“Modelling approaches to predicting thermal conductivity of soils at high temperatures,”International Journal of Energy Research, Vol. 24, pp. 403-423 (2000).
26. Tarnawski, V. R., Leong, W. H., Bristow, K. L.,“Developing a temperature-dependent Kersten function for soil thermal conductivity,”International Journal of Energy Research, Vol. 24, pp. 1335-1350 (2000).
27. Tarnawski, V. R., Leong, W. H.,“Thermal conductivity of soils at very low moisture content and moderate temperatures,”Transport in Porous Media, Vol. 41, pp. 137-147 (2000).
28. Tarnawski, V. R., Gori, F.,“Enhancement of the cubic cell soil thermal conductivity model,”International Journal of Energy Research, Vol. 26, pp. 143-157 (2002).
29. Tarnawski, V. R., Leong, W. H., Gori, F., Buchan, G. D., Sundberg, J.,“Inter-particle contact heat transfer in soil systems at moderate temperatures,”International Journal of Energy Research, Vol. 26, pp. 1345-1358 (2002).
30. Vasseur, G., Brigaud, F., Demongodin, L.,“Thermal conductivity estimation in sedimentary basins,”Tectonophysics, Vol. 244, pp. 167-174 (1995).