跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林俊宏
Jin-Hung Lin
論文名稱: 粉體在不同含水量及乾單位重下之熱傳導係數
指導教授: 田永銘
Yong-Ming Tien
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 110
中文關鍵詞: 粉體微觀力學模式熱傳導係數熱探針連續量測法
外文關鍵詞: Powder, Continuous heat probe method, Thermal conductivity, Micromechanics models
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文進行多種粉體、渥太華砂-B.H. Bentonite與花崗岩碎石-日興土兩種複合土體熱傳導係數的量測。在粉體部分,以乾單位重與含水量為控制變數;在複合土體部分,以顆粒材料重量比為控制變數。量測方法乃採用張大猶(2004)所提出之熱探針連續量測法,此方法可消除熱探針與試體間接觸界面不均勻、減少試驗材料與時間、降低材料變異性等優點。另外,本文提出一套系統性方法,以決定各種粉體之McInnes’ model參數值,並將McInnes’ model參數與土壤物理性質建立關係,得到Modified McInnes’ model。在複合土體部分,以微觀力學模式進行其熱傳導係數的預測,並與實驗值作比較,以了解各預測模式之優劣情況。


    This study carries on the measurement of thermal conductivity of several kinds of powders, sand-B.H. Bentonite composite and Crushed granite-Z.H. Bentonite composite. On measuring powders, dry unit weight and water content are the controlled variables. For the composites, the controlled variable is the weight ratio of inclusions. And measurement method adopts continuous heat probe method proposed by Chang(2004). It avoids the surface contact problems inhibited in ASTM D5334 method and the individual differences of measurement from different specimens. In addition, this study proposes a set of systematical methods in order to determine various kinds of powder for McInnes’ model parameters. The McInnes’ model parameters are investigated to set up the relationship with physical properties of soils and transferred into Modified McInnes’ model. For the composites, the thermal conductivities are predicted by micromechanics models, and results are compared with experimental values to know the differences of each model.

    第一章 緒 論1 1.1 研究動機1 1.2 研究方法1 1.3 論文架構2 第二章 文獻回顧3 2.1熱傳導係數之定義3 2.2暫態量測方法4 2.2.1熱探針法4 2.2.2 熱探針連續量測法7 2.2.3 暫態平面熱源法8 2.3 穩態量測方法9 2.3.1 熱流計法9 2.3.2 分割棒法10 2.4 熱傳導係數預測模式11 2.4.1 De Vries and Campbell模式11 2.4.2 Self-Consistent模式13 2.4.3 微分模式14 2.4.4 N相材料串、並聯模式15 2.5 土壤熱傳導係數相關研究16 2.5.1 緩衝材料熱傳導係數之研究16 2.5.2 含水量對土壤熱傳導係數之影響20 2.5.3 顆粒接觸對土壤熱傳導係數之影響22 2.5.4 溫度對土壤熱傳導係數之影響24 2.5.5 礦物熱傳導係數之求取28 第三章 試驗材料、儀器設備與研究方法29 3.1 試驗材料29 3.1.1 渥太華砂29 3.1.2 花崗岩碎石30 3.1.3 紅土30 3.1.4 膨潤土31 3.1.5 日興土32 3.1.6 高嶺土33 3.2 不同含水量試體準備方法33 3.2.1 增加含水量方法33 3.2.2 減少含水量方法34 3.3試驗儀器與模具35 3.3.1 試驗儀器35 3.3.2 試驗模具39 3.4 熱探針連續量測法試驗步驟42 3.4.1 品質控制42 3.4.2 試驗步驟42 第四章 基質材料熱傳導係數預測模式之建立48 4.1 土壤之熱傳導性質48 4.2 McInnes’ model之參數研究53 4.3 參數之決定59 4.4 Modified McInnes’ model之建立73 4.5 模式之應用與驗證(以中大紅土為例)77 4.5.1 中大紅土熱傳導係數量測結果77 4.5.2 成份材料參數之求取77 4.5.3 預測結果79 第五章 複合土體熱傳導係數之預測81 5.1 微觀力學模式對複合土體熱傳導係數之預測81 5.1.1 複合土體熱傳導係數量測結果81 5.1.2 微觀力學模式之介紹82 5.1.3 成份材料之熱傳導係數83 5.1.4 複合土體熱傳導係數預測結果84 5.1.5 分析與討論95 5.2 Modified McInnes’ model 結合微觀力學模式方法對複合土體熱傳導係數之預測99 第六章 結論與建議105 6.1 結論105 6.2 建議106 參考文獻107

    1.田永銘,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(I)」,行政院原子能委員會委託研究計畫研究報告,912001INER006,
    台北(2001)。
    2.田永銘,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(II)」,行政院原子能委員會委託研究計畫研究報告,912001INER020,
    台北(2002)。
    3.田永銘、朱正安、張大猷,「緩衝材料熱傳導係數之量測與預測模式」,2004岩盤工程研討會論文集,台北(2004)。
    4.簡城宗,「複合土體熱傳導性質之初步研究」,碩士論文,國立中央大學土木工程研究所,中壢(1996)。
    5.劉俊志,「膨潤土與花崗岩碎石混合材料之熱傳導係數」,碩士論文,國立中央大學土木工程研究所,中壢(2003)。
    6.張大猷,「熱探針連續量測法應用於緩衝材料熱傳導係數之量測與分析」,碩士論文,國立中央大學土木工程研究所,中壢(2004)。
    7. 王永明,「以微分模式探求多相複合材料之力學性質」,碩士論文,國立成功大學土木工程研究所,台南(1982).
    8.吳柏林,「放射性廢料處置場中砂-皂土混合緩衝材料之壓實性質」,博士論文,國立中央大學土木工程研究所,中壢(2005)。
    9. Agilent Technologies, Inc., “Agilent 344970A data acquisition/switch unit,” 3rd Ed., U.S.A. (1999).
    10. ASTM, “ASTM D5334 : Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure,” Annual Book of ASTM Standards, Vol. 0409, (2000).
    11. Abu-Hamdeh, N.H., Khdair, A.I., Reeder, R.C.,“A comparison of two method used to evaluate thermal conductivity for some soils,”International Journal of Heat and Mass Transfer, Vol. 44, pp. 1073-1078 (2001).
    12. Bouguerra, A., Laurent, J.P., Goual, M.S., Queneudec, M.,“The measurement of the thermal conductivity of solid aggregates using the transient plane source technique,”Journal of Physics, Vol. 30, pp. 2900-2904 (1997).
    13. Campbell, G. S., Soil Physics With Basic Transport Models for Soil-
    Plant Systems, Elsevier, New York (1985).
    14. Chen, Yongping, Shi, Mingheng,“Study on effective thermal conductivity for porous media using fractal techniques,”Heat Transfer-Asian Research, Vol. 29, pp. 491-497 (2000).
    15. Engelhardt, I., Finsterle, S., “Thermal-hydraulic experiments with bentonite/crushed rock mixtures and estimation of effective parameters by inverse modeling,”Applied Clay Science, Vol. 23, pp. 111-120 (2003).
    16. Farouki, O.T., Thermal Properties of Soils, Series on Rock and Soil Mechanics, Vol. 11, Trans Tech Publications, Germany (1986).
    17. Gustafsson, S E,“Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials,”Rev. Sci. Instrum., Vol. 62, pp. 797-804 (1990).
    18. Gori, F., Corasaniti, S.,“Theoretical prediction of the soil thermal conductivity at moderately high temperatures,”Journal of Heat Transfer, Vol. 124, pp. 1001-1008 (2002).
    19. Incropera, F.P., DeWitt, D.P., Fundamentals of Heat and Mass Transfer, 4th Ed., John Wiley & Sons, Inc., New York, pp. 44-55 (1996).
    20. McInnes, K.,“Thermal conductivities of soils from dryland wheat regions in Easter Washington,”MSc thesis, Washington State University.
    21. Ould-Lahoucine, C., Sakashita, H., Kumada, T., “Measurement of thermal conductivity of buffer materials and evaluation of existing correlations predicting it,” Nuclear Engineering and Design, Vol. 216, pp. 1-11 (2002).
    22. Radhakrishna, H. S., Chan, H. T., Crawford, A. M., and Lau, K. C.,“Thermal and physical properties of candidate buffer-backfill material for a nuclear fuel waste disposal vault,”Canadian Geotechnical Journal, Vol. 26, pp.629-639(1989).
    23. Salomone, L. A., Kovacs, W. D., Kusuda, T.,“Thermal performance of fine-grained soils, Journal of Geotechnical Engineering, Vol. 110, pp. 359-374 (1984).
    24. Tavman, I.H., “Effective thermal conductivity of granular porous materials,” International Communications in Heat and Mass Transfer, Vol. 23, pp. 169-176 (1996).
    25. Tarnawski, V. R., Gori, F., Wagner, B., Buchan, G. D.,“Modelling approaches to predicting thermal conductivity of soils at high temperatures,”International Journal of Energy Research, Vol. 24, pp. 403-423 (2000).
    26. Tarnawski, V. R., Leong, W. H., Bristow, K. L.,“Developing a temperature-dependent Kersten function for soil thermal conductivity,”International Journal of Energy Research, Vol. 24, pp. 1335-1350 (2000).
    27. Tarnawski, V. R., Leong, W. H.,“Thermal conductivity of soils at very low moisture content and moderate temperatures,”Transport in Porous Media, Vol. 41, pp. 137-147 (2000).
    28. Tarnawski, V. R., Gori, F.,“Enhancement of the cubic cell soil thermal conductivity model,”International Journal of Energy Research, Vol. 26, pp. 143-157 (2002).
    29. Tarnawski, V. R., Leong, W. H., Gori, F., Buchan, G. D., Sundberg, J.,“Inter-particle contact heat transfer in soil systems at moderate temperatures,”International Journal of Energy Research, Vol. 26, pp. 1345-1358 (2002).
    30. Vasseur, G., Brigaud, F., Demongodin, L.,“Thermal conductivity estimation in sedimentary basins,”Tectonophysics, Vol. 244, pp. 167-174 (1995).

    QR CODE
    :::