跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張嘉珮
Chia-pei Chang
論文名稱: 探討酵母菌aminoacyl-tRNA synthetases的生化功能及演化
Study of the biological functions and evolution of yeast aminoacyl-tRNA synthetases
指導教授: 王健家
Chien-chia Wang
口試委員:
學位類別: 博士
Doctor
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 99
語文別: 英文
論文頁數: 97
中文關鍵詞: 轉譯起始點附加區段tRNA合成酵素
外文關鍵詞: aminoacyl-tRNA synthetase, appended domain, translation initiator
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先前研究指出酵母菌的一些tRNA synthetase有一富含離胺酸的附加區段,但是在相對應的大腸桿菌酵素中則無,推測此附加區段可能和tRNA結合有關。酵母菌的valyl-tRNA synthetase (ValRS)中也含有N端的附加區段。我們發現這個附加區段具有非專一性的tRNA鍵結能力,刪除此附加區段會影響酵素的tRNA鍵結能力、胺醯化活性、及互補能力,由此可知附加區段對酵素的重要性。如文獻所知,酵母菌使用non-AUG作為轉譯起始點的例子仍不多,我們發現除了AAG及AGG外,其他和AUG只差一個核苷酸的密碼皆可能作為轉譯起始密碼,除此之外我們發現不同的non-AUG轉譯起始密碼可能偏好不同的周圍序列。酵母菌的ALA1基因使用AUG和non-AUG作為轉譯起始密碼同時做出細胞質及粒線體的alanyl-tRNA synthetase (AlaRS)異構酵素,我們想知道其他酵母菌是否也利用類似機制做出AlaRS。結果發現除了Vanderwaltozyma polyspora以外其他酵母菌也都是利用一個基因同時做出細胞質及粒線體的AlaRS異構型,然而在V. polyspora的細胞核中則有兩個不同的AlaRS基因,一個做細胞質酵素,另一個則做粒線體酵素。演化分析發現所有酵母菌的AlaRS都源自於粒線體,因此推測V. polyspora的AlaRS基因可能經歷至少兩次的基因重組,首先源自粒線體的基因獲得細胞質功能成為雙重功能的基因,而其同源基因(源自古生菌)隨即消失,接著雙重功能的基因又經歷全基因體的複製,產生兩個雙功能的基因,最後其中一個保留細胞質功能,另一個則保留粒線體功能。


    Previous studies show that many yeast aminoacyl-tRNA synthetases (aaRSs) contain a lysine-rich polypeptide extension or appended domain, which is absent from their bacterial relatives. Yeast valyl-tRNA synthetase (ValRS) possesses an N-terminal appended domain. This domain acts as an auxiliary tRNA-binding domain. Deletion of this domain from ValRS impaired its tRNA-binding, aminoacylation, and complementation activities. This finding underscores the necessity of an appended domain for functioning of a yeast aaRS. So far, only a few examples of non-AUG initiation have been identified in yeast. Our results show that, except for AAG and AGG, all triplets that differ from AUG by a single nucleotide were able to serve as an initiator in yeast. Moreover, each non-AUG initiator codon appeared to have its own favorite sequence context. In yeast, the ALA1 gene encodes the cytoplasmic and mitochondrial isoforms of AlaRS through alternative initiation from an AUG and an upstream non-AUG codon. Interestingly, except for Vanderwaltozyma polyspora, all yeast species studied contained a single dual-functional AlaRS gene. In contrast, V. polyspora contained two distinct nuclear AlaRS genes, one specifying the cytoplasmic form and the other its mitochondrial counterpart. A phylogenetic analysis revealed that all yeast AlaRS genes, including those in V. polyspora, are of mitochondrial origin. These and other results imply that the AlaRS genes in V. polyspora underwent a major genetic recombination at least twice. First, the mitochondrion-type gene gained cytoplasmic function and became a dual-functional gene, while its orthologue was lost. Later, the dual-functional gene of mitochondrial origin was duplicated into two copies during the whole-genome duplication event, each retaining a single function (cytoplasmic or mitochondrial).

    Table of Contents 中文摘要 i Abstract ii 誌 謝 iii Table of Contents iv List of Figures vi List of Tables viii Overall introduction 1 Chapter I - Promoting the formation of an active synthetase/tRNA complex by a non-specific tRNA-binding domain 6 Abstract 7 Introduction 8 Materials and Methods 11 Results 15 Discussion 21 Chapter II - A single sequence context cannot satisfy all non-AUG initiator codons in yeast 24 Abstract 25 Introduction 26 Materials and Methods 29 Results 32 Discussion 37 Chapter III - Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin 39 Abstract 40 Introduction 41 Materials and Methods 44 Result 47 Discussion 52 Summary 54 References 56 List of Figures Figure 1. Ads of yeast and human ValRSs. 66 Figure 2. Complementation assays for Wt and mutant yeast VAS1 constructs. 67 Figure 3. Aminoacylation assays for Wt and mutant yeast ValRSs. 68 Figure 4. Gel mobility-shift assays for the tRNA-binding activities of the Ad, and Wt and mutant yeast ValRSs. 69 Figure 5. Converting E. coli GlnRS into a functional yeast enzyme. 71 Figure 6. Rescuing a defective yeast ValRS mutant with the Ad of human ValRS. 72 Figure 7. Screening for all feasible non-AUG initiation codons. 73 Figure 8. Comparing the efficiencies of various non-AUG initiator codons in ALA1. 75 Figure 9. Rescuing a cryptic translation initiation site in ALA1. 76 Figure 10. Comparing the efficiencies of various non-AUG initiator codons in GRS1. 78 Figure 11. Comparison of the efficiencies of various non-AUG initiator codons using lacZ as a reporter. 79 Figure 12. Alignment of N-terminal presequences of yeast AlaRSs. 81 Figure 13. Comparison of the acceptor stems of yeast tRNAAla isoacceptors. 82 Figure 14. Cross-specific complementation assays for various yeast AlaRS genes. 83 Figure 15. Mapping of the translation initiator codons of VpALA1 and VpALA2. 84 Figure 16. Analysis of endogenous VpALA1 and VpALA2 mRNAs by RT-PCR. 85 Figure 17. Phylogenetic analysis of the relationships of VpAlaRS1, VpAlaRS2, and other AlaRSs. 86 List of Tables Table 1: Kinetic parameters for aminoacylation of tRNAVal by wild-type and mutant ValRSa 87

    References
    Abramczyk D, Tchorzewski M, Grankowski N (2003) Non-AUG translation initiation of mRNA encoding acidic ribosomal P2A protein in Candida albicans. Yeast 20(12): 1045-1052
    Baim SB, Sherman F (1988) mRNA structures influencing translation in the yeast Saccharomyces cerevisiae. Mol Cell Biol 8(4): 1591-1601
    Bec G, Kerjan P, Waller JP (1994) Reconstitution in vitro of the valyl-tRNA synthetase-elongation factor (EF) 1 beta gamma delta complex. Essential roles of the NH2-terminal extension of valyl-tRNA synthetase and of the EF-1 delta subunit in complex formation. J Biol Chem 269(3): 2086-2092
    Bec G, Kerjan P, Zha XD, Waller JP (1989) Valyl-tRNA synthetase from rabbit liver. I. Purification as a heterotypic complex in association with elongation factor 1. J Biol Chem 264(35): 21131-21137
    Bec G, Waller JP (1989) Valyl-tRNA synthetase from rabbit liver. II. The enzyme derived from the high-Mr complex displays hydrophobic as well as polyanion-binding properties. J Biol Chem 264(35): 21138-21143
    Beebe K, Ribas De Pouplana L, Schimmel P (2003) Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J 22(3): 668-675
    Bennetzen JL, Hall BD (1982) The primary structure of the Saccharomyces cerevisiae gene for alcohol dehydrogenase. J Biol Chem 257(6): 3018-3025
    Binns N, Masters M (2002) Expression of the Escherichia coli pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU. Mol Microbiol 44(5): 1287-1298
    Brown JR, Doolittle WF (1997) Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61(4): 456-502
    Burbaum JJ, Schimmel P (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem 266(26): 16965-16968
    Carter CW, Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem 62: 715-748
    Chalut C, Egly JM (1995) AUC is used as a start codon in Escherichia coli. Gene 156(1): 43-45
    Chang CP, Chen SJ, Lin CH, Wang TL, Wang CC A single sequence context cannot satisfy all non-AUG initiator codons in yeast. BMC Microbiol 10: 188
    Chang KJ, Lin G, Men LC, Wang CC (2006) Redundancy of non-AUG initiators. A clever mechanism to enhance the efficiency of translation in yeast. J Biol Chem 281(12): 7775-7783
    Chang KJ, Wang CC (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279(14): 13778-13785
    Chatton B, Walter P, Ebel JP, Lacroute F, Fasiolo F (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263(1): 52-57
    Chen SJ, Ko CY, Yen CW, Wang CC (2009) Translational efficiency of redundant ACG initiator codons is enhanced by a favorable sequence context and remedial initiation. J Biol Chem 284(2): 818-827
    Chen SJ, Lin G, Chang KJ, Yeh LS, Wang CC (2008) Translational efficiency of a non-AUG initiation codon is significantly affected by its sequence context in yeast. J Biol Chem 283(6): 3173-3180
    Chihade JW, Brown JR, Schimmel PR, Ribas De Pouplana L (2000) Origin of mitochondria in relation to evolutionary history of eukaryotic alanyl-tRNA synthetase. Proc Natl Acad Sci U S A 97(22): 12153-12157
    Chiu WC, Chang CP, Wen WL, Wang SW, Wang CC Schizosaccharomyces pombe possesses two paralogous valyl-tRNA synthetase genes of mitochondrial origin. Mol Biol Evol 27(6): 1415-1424
    Chiu WC, Chang CP, Wen WL, Wang SW, Wang CC (2010) Schizosaccharomyces pombe possesses two paralogous valyl-tRNA synthetase genes of mitochondrial origin. Mol Biol Evol 27(6): 1415-1424
    Cigan AM, Donahue TF (1987) Sequence and structural features associated with translational initiator regions in yeast--a review. Gene 59(1): 1-18
    Cigan AM, Pabich EK, Donahue TF (1988) Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisiae. Mol Cell Biol 8(7): 2964-2975
    Cilley CD, Williamson JR (1997) Analysis of bacteriophage N protein and peptide binding to boxB RNA using polyacrylamide gel coelectrophoresis (PACE). RNA 3(1): 57-67
    Clements JM, Laz TM, Sherman F (1988) Efficiency of translation initiation by non-AUG codons in Saccharomyces cerevisiae. Mol Cell Biol 8(10): 4533-4536
    Diaz-Lazcoz Y, Aude JC, Nitschke P, Chiapello H, Landes-Devauchelle C, Risler JL (1998) Evolution of genes, evolution of species: the case of aminoacyl-tRNA synthetases. Mol Biol Evol 15(11): 1548-1561
    Dietrich A, Weil JH, Marechal-Drouard L (1992a) Nuclear-Encoded Transfer RNAs in Plant Mitochondria. Annual Review of Cell Biology 8(1): 115-131
    Dietrich A, Weil JH, Marechal-Drouard L (1992b) Nuclear-encoded transfer RNAs in plant mitochondria. Annu Rev Cell Biol 8: 115-131
    Donahue TF, Cigan AM (1988) Genetic selection for mutations that reduce or abolish ribosomal recognition of the HIS4 translational initiator region. Mol Cell Biol 8(7): 2955-2963
    Doring V, Mootz HD, Nangle LA, Hendrickson TL, de Crecy-Lagard V, Schimmel P, Marliere P (2001) Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway. Science 292(5516): 501-504
    Dujon B Yeast evolutionary genomics. Nat Rev Genet 11(7): 512-524
    Fersht AR, Dingwall C (1979) Evidence for the double-sieve editing mechanism in protein synthesis. Steric exclusion of isoleucine by valyl-tRNA synthetases. Biochemistry 18(12): 2627-2631
    Francin M, Kaminska M, Kerjan P, Mirande M (2002) The N-terminal domain of mammalian Lysyl-tRNA synthetase is a functional tRNA-binding domain. J Biol Chem 277(3): 1762-1769
    Francin M, Mirande M (2006) Identity elements for specific aminoacylation of a tRNA by mammalian lysyl-tRNA synthetase bearing a nonspecific tRNA-interacting factor. Biochemistry 45(33): 10153-10160
    Francklyn C, Perona JJ, Puetz J, Hou YM (2002) Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. RNA 8(11): 1363-1372
    Frugier M, Giege R (2003) Yeast aspartyl-tRNA synthetase binds specifically its own mRNA. J Mol Biol 331(2): 375-383
    Frugier M, Moulinier L, Giege R (2000) A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding. EMBO J 19(10): 2371-2380
    Fukai S, Nureki O, Sekine S, Shimada A, Tao J, Vassylyev DG, Yokoyama S (2000) Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell 103(5): 793-803
    Giege R, Sissler M, Florentz C (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26(22): 5017-5035
    Godinic V, Mocibob M, Rocak S, Ibba M, Weygand-Durasevic I (2007) Peroxin Pex21p interacts with the C-terminal noncatalytic domain of yeast seryl-tRNA synthetase and forms a specific ternary complex with tRNA(Ser). FEBS J 274(11): 2788-2799
    Hernandez EM, Johnson A, Notario V, Chen A, Richert JR (2002) AUA as a translation initiation site in vitro for the human transcription factor Sp3. J Biochem Mol Biol 35(3): 273-282
    Hou YM, Schimmel P (1988) A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 333(6169): 140-145
    Hradec J (1980) Incorporation of labelled amino acids into proteins, from rabbit reticulocytes, retained on heparin-sepharose. Biochim Biophys Acta 610(2): 285-296
    Hradec J, Dusek Z (1978) All factors required for protein synthesis are retained on heparin bound to Sepharose. Biochem J 172(1): 1-7
    Huang HY, Kuei Y, Chao HY, Chen SJ, Yeh LS, Wang CC (2006a) Cross-species and cross-compartmental aminoacylation of isoaccepting tRNAs by a class II tRNA synthetase. J Biol Chem 281(42): 31430-31439
    Huang HY, Tang HL, Chao HY, Yeh LS, Wang CC (2006b) An unusual pattern of protein expression and localization of yeast alanyl-tRNA synthetase isoforms. Mol Microbiol 60(1): 189-198
    Joachimiak A, Barciszewski J (1980) Amino acid:tRNA ligases (EC 6.1.1..-). FEBS Lett 119(2): 201-211
    Kaminska M, Deniziak M, Kerjan P, Barciszewski J, Mirande M (2000) A recurrent general RNA binding domain appended to plant methionyl-tRNA synthetase acts as a cis-acting cofactor for aminoacylation. EMBO J 19(24): 6908-6917
    Kaminska M, Shalak V, Mirande M (2001) The appended C-domain of human methionyl-tRNA synthetase has a tRNA-sequestering function. Biochemistry 40(47): 14309-14316
    Kozak M (1989) Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol Cell Biol 9(11): 5073-5080
    Kozak M (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc Natl Acad Sci U S A 87(21): 8301-8305
    Kozak M (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266(30): 19867-19870
    Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234(2): 187-208
    Kurland CG, Andersson SG (2000) Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev 64(4): 786-820
    Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Davisson MT, Sundberg JP, Schimmel P, Ackerman SL (2006) Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443(7107): 50-55
    Lim WA, Sauer RT, Lander AD (1991) Analysis of DNA-protein interactions by affinity coelectrophoresis. Methods Enzymol 208: 196-210
    Lincecum TL, Jr., Tukalo M, Yaremchuk A, Mursinna RS, Williams AM, Sproat BS, Van Den Eynde W, Link A, Van Calenbergh S, Grotli M, Martinis SA, Cusack S (2003) Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase. Mol Cell 11(4): 951-963
    Lovato MA, Chihade JW, Schimmel P (2001) Translocation within the acceptor helix of a major tRNA identity determinant. EMBO J 20(17): 4846-4853
    Lovato MA, Swairjo MA, Schimmel P (2004) Positional recognition of a tRNA determinant dependent on a peptide insertion. Mol Cell 13(6): 843-851
    Ludmerer SW, Schimmel P (1987) Construction and analysis of deletions in the amino-terminal extension of glutamine tRNA synthetase of Saccharomyces cerevisiae. J Biol Chem 262(22): 10807-10813
    Ludmerer SW, Wright DJ, Schimmel P (1993) Purification of glutamine tRNA synthetase from Saccharomyces cerevisiae. A monomeric aminoacyl-tRNA synthetase with a large and dispensable NH2-terminal domain. J Biol Chem 268(8): 5519-5523
    Lund E, Dahlberg JE (1998) Proofreading and aminoacylation of tRNAs before export from the nucleus. Science 282(5396): 2082-2085
    Martinis SA, Plateau P, Cavarelli J, Florentz C (1999a) Aminoacyl-tRNA synthetases: a family of expanding functions. Mittelwihr, France, October 10-15, 1999. EMBO J 18(17): 4591-4596
    Martinis SA, Plateau P, Cavarelli J, Florentz C (1999b) Aminoacyl-tRNA synthetases: a new image for a classical family. Biochimie 81(7): 683-700
    Martinis SA, Schimmel P (1996) In Escherichia coli and Salmonella Cellular and Molecular Biology (Neidhardt, F C ed), 2nd Ed: pp. 887-901,
    McClain WH, Foss K (1988) Changing the acceptor identity of a transfer RNA by altering nucleotides in a "variable pocket". Science 241(4874): 1804-1807
    Mirande M (1991) Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol 40: 95-142
    Mirande M, Lazard M, Martinez R, Latreille MT (1992) Engineering mammalian aspartyl-tRNA synthetase to probe structural features mediating its association with the multisynthetase complex. Eur J Biochem 203(3): 459-466
    Motorin YA, Wolfson AD, Lohr D, Orlovsky AF, Gladilin KL (1991) Purification and properties of a high-molecular-mass complex between Val-tRNA synthetase and the heavy form of elongation factor 1 from mammalian cells. Eur J Biochem 201(2): 325-331
    Nangle LA, Motta CM, Schimmel P (2006) Global effects of mistranslation from an editing defect in mammalian cells. Chem Biol 13(10): 1091-1100
    Natsoulis G, Hilger F, Fink GR (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46(2): 235-243
    Negrutskii BS, Shalak VF, Kerjan P, El''skaya AV, Mirande M (1999) Functional interaction of mammalian valyl-tRNA synthetase with elongation factor EF-1alpha in the complex with EF-1H. J Biol Chem 274(8): 4545-4550
    Nureki O, Vassylyev DG, Tateno M, Shimada A, Nakama T, Fukai S, Konno M, Hendrickson TL, Schimmel P, Yokoyama S (1998) Enzyme structure with two catalytic sites for double-sieve selection of substrate. Science 280(5363): 578-582
    Park SJ, Schimmel P (1988) Evidence for interaction of an aminoacyl transfer RNA synthetase with a region important for the identity of its cognate transfer RNA. J Biol Chem 263(32): 16527-16530
    Pelchat M, Lapointe J (1999) Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation. Biochem Cell Biol 77(4): 343-347
    Pisarev AV, Kolupaeva VG, Pisareva VP, Merrick WC, Hellen CU, Pestova TV (2006) Specific functional interactions of nucleotides at key -3 and +4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex. Genes Dev 20(5): 624-636
    Riechmann JL, Ito T, Meyerowitz EM (1999) Non-AUG initiation of AGAMOUS mRNA translation in Arabidopsis thaliana. Mol Cell Biol 19(12): 8505-8512
    Ripmaster TL, Shiba K, Schimmel P (1995) Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc Natl Acad Sci U S A 92(11): 4932-4936
    Sarkar S, Azad AK, Hopper AK (1999) Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96(25): 14366-14371
    Sasaki J, Nakashima N (1999) Translation initiation at the CUU codon is mediated by the internal ribosome entry site of an insect picorna-like virus in vitro. J Virol 73(2): 1219-1226
    Scannell DR, Frank AC, Conant GC, Byrne KP, Woolfit M, Wolfe KH (2007) Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Proc Natl Acad Sci U S A 104(20): 8397-8402
    Schimmel P, Giege R, Moras D, Yokoyama S (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci U S A 90(19): 8763-8768
    Schimmel P, Wang CC (1999) Getting tRNA synthetases into the nucleus. Trends Biochem Sci 24(4): 127-128
    Schimmel PR, Soll D (1979) Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem 48: 601-648
    Shalak V, Kaminska M, Mitnacht-Kraus R, Vandenabeele P, Clauss M, Mirande M (2001) The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J Biol Chem 276(26): 23769-23776
    Sherman F, Stewart JW, Schweingruber AM (1980) Mutants of yeast initiating translation of iso-1-cytochrome c within a region spanning 37 nucleotides. Cell 20(1): 215-222
    Silvian LF, Wang J, Steitz TA (1999) Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. Science 285(5430): 1074-1077
    Simos G, Sauer A, Fasiolo F, Hurt EC (1998) A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol Cell 1(2): 235-242
    Simos G, Segref A, Fasiolo F, Hellmuth K, Shevchenko A, Mann M, Hurt EC (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J 15(19): 5437-5448
    Souciet G, Menand B, Ovesna J, Cosset A, Dietrich A, Wintz H (1999) Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur J Biochem 266(3): 848-854
    Tang HL, Yeh LS, Chen NK, Ripmaster T, Schimmel P, Wang CC (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 279(48): 49656-49663
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22): 4673-4680
    Venema RC, Peters HI, Traugh JA (1991) Phosphorylation of elongation factor 1 (EF-1) and valyl-tRNA synthetase by protein kinase C and stimulation of EF-1 activity. J Biol Chem 266(19): 12574-12580
    Wang CC, Chang KJ, Tang HL, Hsieh CJ, Schimmel P (2003) Mitochondrial form of a tRNA synthetase can be made bifunctional by manipulating its leader peptide. Biochemistry 42(6): 1646-1651
    Wang CC, Morales AJ, Schimmel P (2000) Functional redundancy in the nonspecific RNA binding domain of a class I tRNA synthetase. J Biol Chem 275(22): 17180-17186
    Wang CC, Schimmel P (1999) Species barrier to RNA recognition overcome with nonspecific RNA binding domains. J Biol Chem 274(23): 16508-16512
    Whelihan EF, Schimmel P (1997) Rescuing an essential enzyme-RNA complex with a non-essential appended domain. EMBO J 16(10): 2968-2974
    Woese CR, Olsen GJ, Ibba M, Soll D (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64(1): 202-236
    Wolf YI, Aravind L, Grishin NV, Koonin EV (1999) Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 9(8): 689-710
    Yoon H, Donahue TF (1992) Control of translation initiation in Saccharomyces cerevisiae. Mol Microbiol 6(11): 1413-1419
    Zitomer RS, Walthall DA, Rymond BC, Hollenberg CP (1984) Saccharomyces cerevisiae ribosomes recognize non-AUG initiation codons. Mol Cell Biol 4(7): 1191-1197

    QR CODE
    :::