| 研究生: |
陳玎如 Ting-Ju Chen |
|---|---|
| 論文名稱: |
在Sofic Shift上的多重碎型分析 Multi-fractal Analysis for Sofic Shift |
| 指導教授: |
許正雄
Cheng-Hsiung Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 22 |
| 中文關鍵詞: | Sofic 系統 、Gibbs-like 測度 、有限逼近法 、譜維度 |
| 外文關鍵詞: | sofic system, Gibbs-like measure, cut-off method, Dimension spectrum |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們研究矩陣值勢能在sofic 系統上的譜維度。考慮跟有限座標有關的正矩陣值勢能,透過建構quasi-Bernoulli測度得到譜維度,而且利用有限逼近的方法,我們可以把結論推廣到跟無限座標有關的矩陣值勢能的情況上。最後,我們給一個可以確切算出譜維度的例子。
We study the dimension spectrum of sofic system with the potential which is matrix-valued. For positive and finite-coordinate dependent matrix potential, we set up the dimension spectrum by constructing the quasi-Bernoulli measure and the cut-off method is applied to deal with the infinite-coordinate dependent case. Finally, we give an example which we can compute the spectrum concretely.
[1] D. J. Feng and K. S. Lau. The pressure function for products of nonnegative
matrices. Math. Res. Lett., 9:363–378, 2002.
[2] D. Lind and B. Marcus. An introduction to symbolic dynamics and coding.
Cambridge University Press, Cambridge, 1995.
[3] B. Kitchens. Symbolic dynamics. One-sided, two-sided and countable state
Markov shifts. Springer-Verlag, New York, 1998.
[4] P.Walters. An Introduction to ergodic theory. Springer-Verlag, New York,
1982.
[5] E. Olivier. Uniqueness of the measure with full dimension on sofic affineinvariant
subsets of the 2-torus. Ergodic Theory Dynam. Systems, 2009.
[6] R. W. Kenyon and Y. Peres. Hausdorff dimension of affine-invariant sets.
Israel J. Math., 94:157–178, 1996.