跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉仁材
Jen-Tsai Liu
論文名稱: 自組裝單層膜技術於光學式及電梳式生物感測器之應用研究
The applications of self-assembled monolayers to the optical biosensor and interdigitated electrode biosensor
指導教授: 陳文逸
Wen-Yih Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 198
中文關鍵詞: 生物感測器電梳式阻抗感測器共振波導檢測儀表面電漿共振儀自組裝單層膜技術
外文關鍵詞: guided mode resonance and interdigitated electro, surface plasmon resonance, self-assembled monolayers
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物感測器( biosensor )的主要組成可分為一具選擇性的生物分子以及ㄧ訊號轉換器( transducer )所組成,其中又以將生物分子固定於訊號轉換器表面最為重要,近年來,自組裝單分子層膜技術( self assembly monolayer, SAM )大量的被應用在生物感測器表面的辨識分子的固定化程序上,自組裝單分子層主要是有機分子在溶液中自發性的排列聚集而吸附在基材上行成單分子層膜,其優點有簡單製備、薄膜瑕疵少、具有多樣的官能基種類能在不同的基材上可供生物分子固定使用,本研究藉由自組裝單分子層技術,設計並建構生物感測器之感測介面來檢測生物分子,並探討生物分子與其辨識分子間之交互作用機制。研究之系統包含表面電漿共振儀( surface plasmon resonance, SPR )、共振波導檢測儀( guided mode resonance, GMR )及電梳式阻抗感測器( interdigitated electrode, IDE )等三種不同的感測器。
    在表面電漿共振儀的研究系統中利用 Langmuir 等溫吸附模式及相關動力學參數來分析硼酸分子衍生物與糖化血紅素間的交互作用關係, 實驗結果顯示糖化血紅素( HbA1c )與硼酸分子間的交互作用, pH 值的改變是影響硼酸及雙醇類物質形成配位酯鍵的最主要因素之一。當 pH 值大於硼酸分子的pKa 值時,硼酸分子以陰離子的形式存在,且較易與雙醇類分子產生鍵結,添加路易士鹼可使硼酸分子的立體結構發生改變,並可降低硼酸分子對 pH 值的敏感性。此外在高鹽的環境下非專一性吸附行為會增加,使硼酸分子與 HbA1c 間的專一性作用則會降低。由此所得之結果將有助於糖尿病的診斷準確率,進而提供檢測糖化血紅素創新、簡易及靈敏的另ㄧ選擇。
    SPR 的研究亦延伸至以 DNA-protein 共聚物建構生物感測器,研究方面利用單股DNA與蛋白質(抗體)形成 DNA-protein conjugate ,其蛋白質活性並不會因與DNA形成複合物而失去活性,除此之外,利用 PEG-thiol 與 carboxylic acid terminal thiol 以 mixed SAMs 來建構的 DNA 晶片,具有良好的抗非特異性吸附能力並保留 DNA 的雜交能力,並成功的將 DNA 晶片轉換成蛋白質晶片,並用來檢測蛋白質,而此種方可法則應用在藥物篩選、生物感測及疾病檢測上有相當的發展潛力。
    GMR 是一種光學濾波器,其週期性的波導層能形成一個非常窄小零穿透濾波效果,被濾去的波長即為共振波長,利用此特性將生物分子固定於次波長光柵結構上,量測共振波長的改變,便可作為生物分子的檢測。本研究主要利用 GMR 提供一新穎的生物檢測器,並且透過即時的觀察來研究分子間的交互作用機制,在DNA的檢測上,對於不同長度的 DNA 20 mer、40mer、60mer的去氧核醣核酸之雜交行為皆可分辨並可及時偵測,除此之外,本研究亦將凝血酶的適合體( aptamer )固定於波導共振元件之表面,並於實驗中即時檢測不同濃度之凝血酶,檢測範圍從 0.25 μM 到 1.5 μM 之濃度與其訊號飄移量呈線性關係。此外,在即時檢測的資料中亦提供動力學資訊,結果顯示 aptamer對凝血酶的平衡吸附常數( equilibrium association constant ) Ka 達 106M-1。
    電梳式感測器是基於生物分子於溶液中的生化反應中能使溶液中的阻抗產生變化,其中亦包含生物分子吸附至電極表面所造成的阻抗變化,在電梳式感測器的研究方面,利用( PEG )及仿生性染料( Cibacron Blue F3GA, CB )開發出對於人類血清白蛋白具有專一性的生物感測層,對於人類白蛋白捕捉檢測上,成功的檢測出人類白蛋白,並得到檢測區間為0.1 mg/ml到0.4 mg/ml,亦證明利用阻抗量測生物分子的可行性。
    藉由相關的應用研究,可以了解到不同的環境因子對於生物間的辨識行為之影響,研究結果亦可經由動力學的分析得到生物辨識作用機制的基礎資訊,作為生物感測條件最佳化的依據。除此之外,我們亦證明了電阻抗量測於生物分子的應用上具有相當大的發展潛力。


    Biosensor is a device with the ability to detect an analyte of its biological component together with the physicochemical detector component. It consists of 2 parts: the sensitive biological recognizing element, and the transducer and/or detector element. In recent years, self-assembled monolayers (SAMs) have been widespread employed as bases of the biological recognizing elements to be immobilized onto sensor surface. SAMs are ordered molecular assemblies formed by the adsorption of active surfactant molecules on solid surface. The advantages are the ease for preparation and provided wide ranges of functional groups for immobilizing the biomolecular assemblies on different substrates. This makes SAMs inherently attractive for biosensor fabrication. This study concentrates on the functionalized SAMs on gold and glass (SiO2) surfaces for developing optical biosensors, surface plasmon resonance (SPR), guided mode resonance (GMR) and electrode sensor, and interdigitated electrode (IDE) biosensors.
    The study of SPR investigated the effect of Lewis bases and salt concentrations with different pH values on the mechanism of glycated hemoglobin (HbA1c) and phenylboronic acid (PBA) interaction. The results of the interaction between HbA1c and phenylboronic acid exhibited the pH value is an important factor affecting HbA1c and PBA, forming the complex and Lewis bases. Lewis bases could change the stereo-structure of phenylboronic acid to form B(OH)3 and therefore would easily bind with saccharine. In addition, a linear response ranging from 0.43 to 3.49 μg/ml appeared in HbA1c, and the detection limit was 0.01 μg/ml.
    The SPR study in this thesis was extended to the protein biosensor fabrication via protein–DNA conjugates. The ssDNA probe surface was built up by following the mixed self-assembled monolayers (mixed SAMs) method. The results represented that the protein-DNA conjugates were immobilized on the chip surface with a sequence complementary to the ssDNA on the surface via sequence specific hybridization. In addition, the chip had high specificities to human serum albumin (HSA). The results demonstrated that the DNA chip was successfully converted into protein chip. This strategy would be useful and could be extensively employed for more versatile applications, such as drug screening, biosensors, and medical diagnostics.
    In the GMR research, GMR served as an optical filter which reflects specific wavelength in transmission light. GMR periodic waveguides produced sharp spectra when the illuminating wave matched to a leaky waveguide mode. Since the coupling range was typically small, these resonating elements exhibited high parametric sensitivity. They could thus be extremely responsive to small amounts of the change of biological molecules on chip interface. Recent efforts for improvement of resonant sensor had employed amplitude mode where the wavelength shift of the reflectance was measured directly. The purpose of this case study was to use GMR to provide a new method for investigating the interactions between the biomolecular. In this case, we presented a simple design of GMR for DNA and protein detection. The results demonstrated that it was successful to obtain the DNA hybridization by analysis of the surface wavelength peak shift using different DNA mass of 20 mer, 40 mer, and 60 mer. The study also stretched to immobilize the thrombin aptamer on GMR device for detecting the thrombin. The results also showed that the linear relationship of the concentrations of thrombin from 0.25μM to 1.5μM and the equilibrium association constant (Ka) is about 106 M-1.
    The investigation of interdigitated electrode sensor for biosensing is based on the fact that many biochemical reactions in a solution produce changes in the electrical resistance. Impedance measurements would reflect the changes of the resistance with the biomolecular assemblies attached to the sensor surface. This study showed an interdigitated electrode sensor for detection of Human Serum Albumin (HSA). The blue dye Cibacron Blue F3GA (CB), with a high affinity for HSA, was used as a captor. Experimental results showed a linear trend in the concentrations of HSA from 0.1 mg/ml to 0.4 mg/ml.
    In this research, we studied the SPR, GMR and IDE biosensors. The SPR and GMR could provide useful knowledge to understand the mechanism of biomolecular recognition. The impedance sensor, IDE, demonstrated a great potential for detection of specific sites on various biomolecular species.

    摘要 i Abstract iv 誌謝 vii 圖目錄 xiii 表目錄 xviii 一、緒論 1 1.1 研究論文組織架構 1 1.1.1 生物分子辨識系統 3 1.1.2 疏水作用力 3 1.1.3 極性作用力 4 1.1.4 靜電作用力 5 1.1.5 生物辨識系統之解析 6 1.1.6 以動力學與熱力學研究生物辨識機制 9 1.2生物感測器 13 1.2.1 表面電漿共振儀 14 1.2.2 波導共振光學生物感測器 19 1.2.3 電梳式電子生物感測器 20 1.3建構生物辨識功能之感測介面 22 1.4自我組裝單層膜表面改值技術 25 1.5自我組裝單層膜之成膜影響因素 30 1.5.1溫度對分子自組裝單分子膜的影響 30 1.5.2飽和碳鏈長短對子自組裝單分子層的影響 32 1.5.3 自組裝單分子濃度與溶液中水含量對自組裝單分子膜的影響 35 1.5.4氫鍵對自組裝單分子層膜的影響 37 1.5.5氧化作用( oxidation )對自組裝單分子層的影響 38 1.5.6基材表面乾淨程度對自組裝單分子層的影響 40 1.6自組裝單分子層膜在感測器的近年發展 41 1.6.1 混合自組裝單分子層 41 1.6.2 SAMs在近年的應用研究 46 1.6.3酵素型感測器 46 1.6.4核酸感測器 47 1.6.5免疫型感測器 48 1.7 表面生物辨識分子之固定化 49 1.7.1 DNA的固定化方法 50 1.7.2 蛋白質的固定化 54 1.7.3抗非專一吸附之生物感測器材料 56 1.8 自組裝單分子層膜技術之優點 61 二、利用表面電漿共振儀於硼酸分子與糖化血紅素交互作用機制探討 62 2.1前言 62 2.1.1 糖化血紅素的由來與生理意義 63 2.1.2 糖化血紅素現行檢測方法 64 2.1.3 硼酸分子衍生物與Diol分子間的交互作用及剖析 66 2.1.4 研究動機 73 2.2 實驗儀器、方法與材料 74 2.2.1實驗藥品 74 2.2.2儀器設備 74 2.3實驗步驟 75 2.3.1緩衝溶液的配置 75 2.3.2合成DTBA-PBA 75 2.3.3 DTBA-PBA晶片的制備 76 2.3.4蛋白質溶液的製備 77 2.3.5接觸角測量 77 2.3.6傅立葉轉換紅外光譜檢測表面分子官能基 77 2.3.7表面元素分析 77 2.3.8表面電漿共振感測儀之實驗 77 2.3.9 SPR數據之處理與軟體分析 78 2.4 實驗結果 80 2.4.1表面鑑定 80 2.4.2 ATR–FTIR的表面官能基觀察 80 2.4.3靜態接觸角量測及表面元素分析 81 2.4.4 DTBA-PBA與糖化血紅素的特異性測試 82 2.4.5 DTBA-PBA與糖化血紅素的交互作用 83 2.4.6擬合分析非特異性吸附 85 2.4.7動力學參數的分析 86 2.4.8糖化血紅素檢測的定量分析 87 2.5 討論 89 2.5.1環境pH 值對DTBA-PBA與糖化血紅素的交互作用的影響 89 2.5.2鹽濃度對DTBA-PBA與糖化血紅素的交互作用的影響 90 2.5.3路易士鹼濃度對DTBA-PBA與糖化血紅素的交互作用的影響 91 2.5.4 DTBA-PBA檢測研究之困境 91 2.6 DTBA-PBA與HbA1c交互作用研究之結論 92 三、導模共振光學生物感測器DNA檢測 93 3.1前言 93 3.1.1去氧核醣核酸分子 93 3.1.2研究動機 95 3.2實驗儀器、方法與材料 95 3.2.1實驗藥品 95 3.2.2實驗儀器 96 3.2.3實驗方法 96 3.3結果與討論 97 3.3.1表面改質鑑定 97 3.3.2 DNA 雜交實驗 99 3.3.3 aptamer 檢測凝血酶 102 3.4 GMR ssDNA及凝血酶生物感測器研究之結論 105 四、電梳式電子生物感測器於人類血清蛋白質的檢測 106 4.1 前言 106 4.1.1 人類血清白蛋白結構、特性之描述 106 4.1.2 微量尿白蛋白定義及現行使用之檢測系統 107 4.1.3 研究目的 107 4.2 實驗儀器、方法與材料 108 4.2.1 實驗藥品 108 4.2.2 實驗儀器 109 4.2.3 實驗條件與操作方法 109 4.3 結果與討論 110 4.3.1 晶片鑑定 110 4.3.2 蛋白質阻抗量測 111 4.4 電梳式生物感測器研究之結論 115 五、以DNA-protein 共聚物建構生物感測器 116 5.1 前言 116 5.1.1 DNA晶片與蛋白質晶片 116 5.1.2 研究目的 117 5.2 方法與材料 118 5.2.1實驗藥品 118 5.2.2實驗儀器 119 5.2.3 DNA晶片的固定化 120 5.2.4合成DNA-protein conjugates 120 5.2.5實驗條件與操作方法 121 5.3結果與討論 122 5.3.1 DNA-protein 複合物的鑑定 122 5.3.2 DNA 晶片的非特異性吸附測試 123 5.3.3 檢測抗原測試 123 5.3.4晶片再生測試結果 124 5.4以DNA-protein 共聚物建構生物感測器研究之結論 126 六、總結論 127 參考文獻 129 附錄 154

    [1]. Ellgaard, L., Molinari, M. and Helenius, A., “Setting the standards: quality control in the secretory pathway”, Science 286 (1999) 1882.
    [2]. Roberts, D.L., Weix, D.J., Dahms, N.M. and Kim, J.J.P.,“Molecular-basis of lysosomal-enzyme recognition - 3-dimensional structure of the cation-dependent mannose 6-phosphate receptor”, Cell 93 (1998) 639.
    [3]. Gerhard, M., Lehn, N., Neumayer, N., Borén, T., Rad, R., Schepp, W., Miehlke, S., Classen, M. and Prinz, C., “Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin”, Proc. Natl. Acad. Sci. USA 96 (1999) 12778.
    [4]. Mulvey, M.A., Schilling, J.D., Martinez, J.J. and Hultgren, S.J. “From the Cover: Bad bugs and beleaguered bladders: Interplay between uropathogenic Escherichia coli and innate host defenses”, Proc. Natl. Acad. Sci. USA 97 (2000) 8829.
    [5]. Cummings, M.D., Ling, H., Armstrong, G.D., Brunton, J.L. and Read, R.J., “Modeling the carbohydrate-binding specificity of pig edema toxin”, Biochemistry 37 (1998) 1777.
    [6]. Brightbill, H.D., Libraty, D.H., Krutzik, S.R., Yang, R.B., Belisle, J.T., Bleharski, J.R., Maitland, M., Norgard, M.V., Plevy, S.E., Smale, S.T., Brennan, P.J., Bloom, B.R., Godowski, P.J. and Modlin, R.L. “Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors” Science 285 (1999) 732.
    [7]. Amiji, M. M., “Synthesis of anionic poly(ethylene glycol) derivative for chitosan surface modification in blood-contacting applications” Carbohyd. Polym., 32, 193-199, 1997.
    [8]. Amiji, M. M., “Permeability and blood compatibility properties of chitosan-poly(ethylene oxide) blend membranes for haemodialysis “ Biomaterials, 16, 593-599, 1995.
    [9]. Queiroz, J.A., Tomaz, C.T. and Cabral, J.M.S., “Hydrophobic interaction chromatography of proteins”, J. Biotechnol. 87, 143-159, 2001.
    [10]. Dill, K.A., “Dominant forces in protein folding”, Biochem. 29, 7133-7155, 1990.
    [11]. Makhatadze, G.I. and Privalov, P.L., “Energetics ofprotein-structure”, Adv. Protein Chem. 47, 307-425, 1995.
    [12]. Bruinsma, G.M., Mei, H.C. and Busscher, H.J., “Bacterial adhesionto surface hydrophilic and hydrophobic contact lenses”, Biomaterials 22, 3217-3244, 2001.
    [13]. Besseling N. A. M., “Theory of Hydration forces between surfaces”, Langmuir, 13, 2113-2122, 1997.
    [14]. Hofmeister F. “Zur Lehre von der Wirkung der Salze”, Arch. Exp.Pathol. Pharmakol. 24, 247-260, 1888.
    [15]. Jerker P., Lars S., Nermin F. and Ingmar O., “Salting-out in amphiphilic gels as a new approach to hydrophobic adsorption”, Nature 245, 465–466, 1973.
    [16]. Porath, J., Sundberg, L., Fornstedt, N. and Olson, I., “Some general aspects of hydrophobic interaction chromatography”, J. Chromatog. 87, 325–331, 1973.
    [17]. Hjertén, S., Linda O. N., Yoshiko K. and Tsutomu A., “Hydrophobic interaction chromatography in alkaline pH”, Anal. Biochem. 182, 266-270, 1989
    [18]. Ragone, R., “Hydrogen-bonding classes in proteins and their contribution to the unfolding reaction”, Protein Sci. 10 (2001) 2075.
    [19]. Dvorsky, R., Sevcik, J., Caves, L.S.D., Hubbard, R.E. and Verma, C.S., “Temperature effects on protein motions – a molecular-dynamics study of RNase-s A”, J. Phys. Chem. B 104 (2000) 10387.
    [20]. Dvorsky, R., Sevcik, J., Caves, L.S.D., Hubbard, R.E. and Verma,C. S., “Temperature effects on protein motions - amolecular-dynamics study of RNase-s A”, J. Phys. Chem. B 104, 10387-10397, 2000.
    [21]. Belval, S., Breton, B., Huddleston, J. and Lyddiatt, A., “Influenceof temperature upon protein partitioning in poly(ethylene glycol)salt aqueous two - phase systems close to the critical point with some observations relevant to the partitioning of particles”, J. Chromatogr. B 711, 19-29, 1998.
    [22]. Alberts et al (2002) Molecular Biology of the Cell (4e) p.57
    [23]. Ragone, R., “Hydrogen-bonding classes in proteins and their contribution to the unfolding reaction”, Protein Sci. 10, 2075-2082, 2001.
    [24]. Baxter, N.J., Hosszu, L.L.P., Waltho, J.P. and Williamson, M.P., “Characterization of low free-energy excited-states of folded proteins”, J. Mol. Biol. 284, 1625-1639, 1998.
    [25]. Wiggins, P.M., “Hydrophobic hydration, hydrophobic forces and protein folding”, Physica A 238, 113-128, 1997.
    [26]. Robinson, G.W. and Cho, C.H., "Role of hydration water in protein unfolding”, Biophys. J. 77, 3311-3318, 1999.
    [27]. Hearn, M.T.W. and Zhao, G., “Investigations into the thermodynamics of polypeptide interaction with nonpolar ligands”, Anal. Chem. 71, 4874-4885, 1999.
    [28]. Kovrigin, E.L. and Potekhin, S.A., “On the stabilizing action of protein denaturants: acetonitrile effect on stability of lysozyme in aqueous solutions”, Biophys. Chem. 83, 45-59, 2000.
    [29]. Barrett D. A., Power G.M., Hussain M. A., Pitfield I. D., Shaw P. N. and Davies M. C., "Protein interactions with model chromatographic stationary phases constructed using self-assembled monolayers." J. Sep. Sci. 28, 483-491, 2005.
    [30]. Regenmortel, M.H.V. and Altschuh, D. in: Gizeli, E. and Lowe,C.R., (Eds.), Biomolecular Sensors, Taylor & Francis Press, New York, 2002, p.10.
    [31]. Matsushima, A., Fujita, T., Nose, T. and Shimohigashi, Y., “Edge-to-face CH/π interaction between ligand Phe-Phenyl and receptor aromatic group in the thrombin receptor activation”, J. Biochem. 128 (2000) 225.
    [32]. Valle, E.M.M. and Galan, M.A., “Specific and nonspecific adsorption in affinity chromatography part I. preliminary and equilibrium studies”, Ind. Eng. Chem. Res. 40 (2001) 369.
    [33]. Yampolskaya, G., D. Platikanov, "Proteins at fluid interfaces: Adsorption layers and thin liquid films." Advances in Colloid and Interface Science 128-130: 159-183, 2006.
    [34]. Kassab, A., H. Yavuz, M. Odabasi, A. Denizli, "Human serum albumin chromatography by Cibacron Blue F3GA-derived microporous polyamide hollow-fiber affinity membranes." Journal of Chromatography B: Biomedical Sciences and Applications 746(2), 123-132, 2000.
    [35]. Yamamoto, S. and Ishihara, T., “Ion-exchange chromatography of proteins near the isoelectric points”, J.Chromatogr. A 852 (1999) 31.
    [36]. Herbold, C.W., Miller, J.H. and Goheen, S.C., “Cytochrome-c unfolding on an anionic surface”, J. Chromatogr. A 863 (1999) 137.
    [37]. Goheen, S.C. and Gibbins, B.M., “Protein losses in ion-exchange and hydrophobic interaction high-perferformance liquid chromatography”, J. Chromatogr. 890 (2000) 73.
    [38]. Besseling, N.A.M., “Theory of hydration forces between surfaces”, Langmuir 13 (1997) 2113.
    [39]. Wiggins, P.M., “Hydrophobic hydration , hydrophobic forces and protein folding”, Physica A 238 (1997) 113.
    [40]. Karlsson R., Michaelsson A., Mattsson L., “Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system”, J. Immunol. Methods 145 (1991) 229-240.
    [41]. Oshannessy D. J., Brighamburke M., Soneson K. K., Hensley P., Brooks I. , “Determination of Rate and Equilibrium Binding Constants for Macromolecular Interactions Using Surface Plasmon Resonance: Use of Nonlinear Least Squares Analysis Methods”, Analtical biochemistry 212,457-468,1993
    [42]. Morton T. A., Myszka D. G., Chaiken I. M., “Interpreting Complex Binding Kinetics from Optical Biosensors: A Comparison of Analysis by Linearization, the Integrated Rate Equation, and Numerical Integration”, Analtical biochemistry 227,176-185,1995
    [43]. Johnson, R.D. and Arnold, F.H., “The Temkin isotherm describes heterogeneous protein adsorption”, Biochimica et Biophysica Acta 1247 293 , 1995.
    [44]. Finette, G.M.S., Mao, Q.M. and Hearn, M.T.W., “Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilished metal ion affinity and dye affinity matrices with different ionic strength and temperature conditions”, J. Chromatogr. A 763, 71 , 1991.
    [45]. Cynthia F., Shuman, M. D. H. U. H. D., "Kinetic and thermodynamic characterization of HIV-1 protease inhibitors." Journal of Molecular Recognition 17, 106-119, 2004.
    [46]. Haidacher, D., Vailaya A., Horvath C., "Temperature effects in hydrophobic interaction chromatography." Proceedings of the National Academy of Sciences of the United States of America 93(6): 2290-2295, 1996.
    [47]. Perkins T. W., Mak D. S., T. Root W., Lightfoot E. N., "Protein retention in hydrophobic interaction chromatography: Modeling variation with buffer ionic strength and column hydrophobicity." Journal of Chromatography A 766, 1-14, 1997.
    [48]. Rogers K. R., "Recent advances in biosensor techniques for environmental monitoring." Analytica Chimica Acta 568, 222-231, 2006.
    [49]. Clark L. C., and Lyons, C., “Electrode system for continuous monitoring in cardiovascular surgery,” Annals New York Academy of Science, 102, 29-45, 1962.
    [50]. Updike S. J., and Hicks, G. P., “The Enzyme Electrode,” Nature, 214, 986-988, 1967.
    [51]. Huang S.H., Shih Y.C., Wu C.Y., Yuan C.J., Yang Y.S., Li Y.K. , Wu T.K., "Detection of serum uric acid using the optical polymeric enzyme biochip system." Biosensors and Bioelectronics 19, 1627-1633, 2004.
    [52]. Poetz O., Schwenk J. M., Kramer S., Stoll D., Templin M. F. and Joos T. O., "Protein microarrays: catching the proteome." Mechanisms of Ageing and Development 126, 161-170, 2005.
    [53]. Lee J. O., So H. M., Jeon E. K., Chang H, Won K. and Kim Y., “Aptamers as molecular recognition elements for electrical nanobiosensors”, Anal Bioanal. Chem. 390, 1023–1032, 2008.
    [54]. Ozaki H., Nishihira A., Wakabayashi M., Kuwahara M. and Sawai H., "Biomolecular sensor based on fluorescence-labeled aptamer." Bioorganic & Medicinal Chemistry Letters 16, 4381-4384, 2006.
    [55]. McCauley T. G., Hamaguchi N. and Stanton M., "Aptamer-based biosensor arrays for detection and quantification of biological macromolecules." Anal. Biochem. 319, 244-250, 2003.
    [56]. Balamurugan S., Obubuafo A., Soper S. A., McCarley R. L. and Spivak D. A., (2006). "Designing Highly Specific Biosensing Surfaces Using Aptamer Monolayers on Gold." Langmuir 22, 6446-6453, 2006.
    [57]. Bayrak Y., “Application of Langmuir isotherm to saturated fatty acid adsorption”, Microporous and Mesoporous Materials 87, 203-206, 2006.
    [58]. Mohan S., Dorai D. T., Srimal S., Bachhawat B. K., DAS M. K., “Fluorescence studies on the interaction of some ligands with carcinoscorpin, the sialic acid specific lectin, from the horseshoe crab, Carcinoscorpius rotundacauda”, J. Biosci., 5, 1983, 155-162, 1983.
    [59]. Morgan H. and D. M. Taylor, “A surface plasmon resonance immunosensor based on the streptavidin-biotin complex. Biosensor and Bioelectronics, 7, 405-410, 1992.
    [60]. Boozer C., Ladd J., Chen S. F. and Jiang S. T., “DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor”, Anal. Chem. 78, 1515-1519, 2006.
    [61]. Ladd J., Boozer C., Yu Q. M., Chen S. F., Homola J. and Jiang S., “DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge”, Langmuir, 20, 8090-8095, 2004.
    [62]. Myszka D.G., “Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors”, Current Opinion in Biotechnology, 8, 50-57, 1997.
    [63]. Myszka D. G., Jonsen M. D. and Graves B. J., “Equilibrium analysis of high affinity interactions using BIACORE”, Anal. Biochem. 265, 326-330, 1998.
    [64]. Otto A., “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection”, Z. Phys. 216, 398–410, 1968.
    [65]. Kretschmann E. and Raether H., “Radiative decay of non-radiative surface plasmons excited by light”, Z. Naturforsch, 23A, 2135-2136, 1968.
    [66]. Wang S. S. and Magnusson R., “Theory and applications of guidedmode resonance filters“, Appl. Opt. 32, 2606–2613, 1993.
    [67]. Liu Z. S., Tibuleac S., Shin D., Young P. P. and Magnusson R.,“ High efficiency guided-mode resonance filter”, Opt. Lett. 23, 1556–1558, 1998.
    [68]. Sharon A., Rosenblatt D. and Friesem A. A., “Resonant grating-waveguide structures for visible and near-infrared radiation”, J. Opt. Soc. Am. A 14, 2985-2993, 1997.
    [69]. Arwin, H.I., Lundstrom, I., Stanbro, W.D., „Electrode desorption method for determination of enzymatic activity”, Med. Biol. Eng. Comput. 20, 362–374, 1982.
    [70]. Newman, A.L., Hunter, K.W., Stanbro, W.D., “The capacitive affinity sensor: a new biosensor, in: Proceedings of the Second International Meeting on Chemical Sensors” Bordeaux, France, July 7–10, 596–598, 1986.
    [71]. Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K., Wolf, B., “Monitoring of cellular behavior by impedance measurements on interdigitated electrode structures”, Biosens. Bioelectrons. 12, 29–41, 1997.
    [72]. Morita, M., Niwa, O., Horiuchi, T., “Interdigitated array microelectrodes as electrochemical sensors”, Electrochim. Acta 42, 3177–3183, 1997.
    [73]. Cohen, A.E., Kunz, R.R., “Large-area interdigitated array microelectrodes for electrochemical sensing”, Sens. Actuators B 62, 23–29, 2000.
    [74]. Kim, S.K., Hesketh, P.J., Li, C., Thomas, J.H., Halsall, H.B., Heineman, W.R., “Fabrication of comb interdigitated electrodes array (IDA) for a microbead-based electrochemical assay system”, Biosens. Bioelectron. 20, 887–894, 2004.
    [75]. Yang, L., Li, Y., Griffis, C.L., Johnson, M.G., “Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium”. Biosens. Bioelectron. 19, 1139–1147, 2004.
    [76]. Chang, B.W., Chen, C.H., Ding, S.J., Chen, D.C.H., Chang, H.C., “Impedimetric monitoring of cell attachment on interdigitated microelectrodes”, Sens. Actuators B 105, 159–163, 2005.
    [77]. Van Gerwen, P., Laureyn, W., Laureys, W., Huyberechts, G., Beeck, M.O.D., Baert, K., Suls, J., Sansen, W., Jacobs, P., Hermans, L., Mertens, R., “Nanoscaled interdigitated electrode arrays for biochemical sensors”, Sens. Actuators B 49, 73–80, 1998.
    [78]. Laureyn, W., Frederix, F., Van Gerwen, P., Maes, G., “Nanoscaled interdigitated gold electrodes for impedimetric immunosensing. Transducers”, Digest of Technical papers, Sendai, Japan, 7–10 June 1999.
    [79]. Laureyn, W., Nelis, D., Van Gerwen, P., Baert, K., Hermans, L., Maes, G., “Nanoscaled interdigitated titanium electrodes for impedimetric biosensing” Eurosensors XIII, In: Proceedings of the 13th European Conference on Solid-State Transducers, 12–15 September, Hague, The Netherland. 1999.
    [80]. Laureyn, W., Nelis, D., Van Gerwen, P., Baert, K., Hermans, L., Magnee, R., Pireaux, J.J., Maes, G., “Nanoscaled interdigitated titanium electrodes for impedimetric biosensing” Sens. Actuat. B 68, 360–370, 2000.
    [81]. Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Wolf, B., “On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures”, Med. Biol. Eng. Comput. 36, 365–370, 1998.
    [82]. Yogeswaran U., Chen S. M., “A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material”, Sensors 8, 290-313, 2008.
    [83]. Rinaudo M., Domard A. (1988). Solution properties of chitosan. In: Chitin and Chitosan: sources, chemistry, biochemistry, physical properties and application. Skjak-braek, G., Anthonsen, T., and Sandford, P. (Eds), Elsevier Applied Science, London and New York. p.71.
    [84]. Miksa D., Irish E. R., Chen D., Composto R. J., Eckmann D. M.,” Dextran Functionalized Surfaces via Reductive Amination: Morphology, Wetting, and Adhesion”, Biomacromolecules, 7 (2), 557–564, 2006.
    [85]. Garbassi F., Morra M., Occhiello E., “Polymer Surface From Physics to Technology”, Polymer International, 49, P. 135, 2000.
    [86]. Wertheimer M. R., Martinu L., Liston E. M., “Plasma surface modification of polymers for improved adhesion: a critical review”, J. Adhes. Sci. Technol, 7, 1091-1127, 1993
    [87]. Shoji A., Fukushima T., Kumar D. S., Kashiwagi K., Yoshida Y.,” Surface Modification of Plasma Polymerized Silicon Resin Films Produced at Different Gas Atmospheres”, Journal of Photopolymer Science and Technology, 19, 241-244, 2006.
    [88]. Wang C. C., Hsiue G. H., “Glucose oxidase immobilization onto a plasma-induced graft copolymerized polymeric membrane modified by poly(ethylene oxide) as a spacer”, J. Appl. Polym. Sci.,50, 1141-1149, 1993.
    [89]. Franklin B.,” Of the stilling of waves by means of oil”, Phil. Trans. R. Soc. 1774, 64, 445-460.
    [90]. Pockels A., “Surface tension”, Nature, 43, 437-439, 1891.
    [91]. Rayleigh L.” Investigations in capillarity”, Phil. Mag. 48, 321-337, 1899.
    [92]. Devaux H.,”Oil Films on Water and on Mercury”, Smithsonian Institute Ann. Rep. 67, 261-273, 1913.
    [93]. Hardy, W. B.,” The tension of composite fluid surfaces and the mechanical stability of films of fluids”, Proc. R. Soc. A. 86, 610-635, 1912.
    [94]. Langmuir I., "The constitution and fundamental properties of solids and liquids. II. liquids.", J. Am. Chem. Soc. 39, 1848-1906, 1917.
    [95]. Ulman A. "Formation and Structure of Self-Assembled Monolayers", Chem. Rev. 96, 1533-1554, 1996.
    [96]. Wang H., Chen S., Li L., Jiang S.,” Improved Method for the Preparation of Carboxylic Acid and Amine Terminated Self-Assembled Monolayers of Alkanethiolates”, Langmuir, 21, 2633-2636, 2005.
    [97]. Vallant T., H. Brunner, U. Mayer, H. Hoffmann, T. Leitner, R. Resch, G. Friedbacher. "Formation of Self-Assembled Octadecylsiloxane Monolayers on Mica and Silicon Surfaces Studied by Atomic Force Microscopy and Infrared Spectroscopy." J. Phys. Chem. B 102, 7190-7197, 1998.
    [98]. Hwang S., Chi Y.S., Lee B.S., Lee S., Choi I.S., Kwak J.,” pH-Dependent rectification in self-assembled monolayers based on electrostatic interactions”, Chem. Commun., 183–185, 2006.
    [99]. Riepl M., Enander K., Liedberg B., Kruschina M., Ortigao F., “Functionalized Surfaces of Mixed Alkanethiols on Gold as a Platform for Oligonucleotide Microarrays“, Langmuir 18, 7016–7023, 2002.
    [100]. Bigelow W. C., Pickett D. L., Zisman, W. A. “Oleophobic monolayers I. Films adsorbed from solution in non-polar liquids” J. Colloid Interface Sci. 1, 513-538, 1946.
    [101]. Nuzzo R. G., Allara D. L., “Adsorption of bifunctional organic disulfides on gold surfaces” J. Am. Chem. Soc. 105, 4481-4483, 1983.
    [102]. Yu J. j., Tan Y. H., Li X., Kuo P. K., Liu G. y., "A Nanoengineering Approach to Regulate the Lateral Heterogeneity of Self-Assembled Monolayers." J. Am. Chem. Soc. 128, 11574-11581, 2006.
    [103]. Sagiv, J. "Organized Monolayers by Adsorption, I . Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces." J. Am. Chem. Soc. 102, 92-98, 1980.
    [104]. Silberzan, P., Leger, L., Ausserre, D. & Benattar, J. J. "Silanation of silica surfaces. A new method of constructing pure or mixed monolayers." Langmuir 7, 1647-1651, 1991.
    [105]. Rye R. R., Nelson G. C., Dugger M. T. "Mechanistic Aspects of lkylchlorosilane Coupling Reactions." Langmuir 13, 2965-2972, 1997.
    [106]. Fixe F., Faber A., Gonçalves D., Prazeres D.M.F., Cabeça R., Chu V., Ferreira G., Conde J. P., “Thin film micro arrays with immobilized DNA for hybridization analysis”, Material Research Society Symposium Proceedings, 2002, 723, O2.3.1- O2.3.6
    [107]. Bierbaum K., Grunze M., Baski A. A., Chi L. F., Schrepp W., Fuchs H., “Growth of self-assembled n-alkyltrichlorosilane films on Si(100) investigated by atomic force microspcopy”, Langmuir 11, 2143-2150, 1995.
    [108]. Resch S. R., “In situ and ex situ AFM investigation of the formation of octadecylsiloxane monolayer”, Appl. Surface Sci., 168-175, 1999.
    [109]. Arce F. T., Vela M. E., Salvarezza R. C., Arvia A. J. , “Complex Structural Dynamics at Adsorbed Alkanethiol Layers at Au(111) Single-Crystal Domains”, Langmuir 19, 2974-2982, 2003.
    [110]. Li L., Chen S., Jiang S., “Protein Adsorption on Alkanethiolate Self-Assembled Monolayers: Nanoscale Surface Structural and Chemical Effects”, Langmuir 19, 2974-2982, 2003.
    [111]. Schreiber F., “Structure and Growth of Self-Assembling Monolayers”, Progress in Surface Science 65, 151-256, 2000.
    [112]. Brzoska J. B., Shahidzadeh N., Rondelez F., “Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings”, Nature 360, 719-721, 1992.
    [113]. Carraro C., Yauw O. W., Sung M. M., Maboudian R. "Observation of Three Growth Mechanisms in Self-Assembled Monolayers." J. Phys. Chem. B. 102, 4441-4445, 1998.
    [114]. Kevin W. K., Marye Anne. F., James K. W., “Effect of Alkyl Chain Length on the Fluorescence of 9-Alkylfluorenyl Thiols as Self-Assembled Monolayers on Gold”, J. Phys. Chem. B, 105, 10594-10599, 2001.
    [115]. Dulkeith E., A. C. Morteani, T. Niedereichholz, T. A. Klar, and J. Feldmann, “Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects”, Phys. Rev.Lett. 89, 203002–2030021-4, 2002.
    [116]. Masuko M., Miyamoto H., Suzuki A., “Tribological characteristics of self-assembled monolayer with silane bonding to Si surface”, Tribology International 40, 1587–1596, 2007.
    [117]. Wang A., Tang H., Cao T., Salley S. O., Simon Ng K.Y., “In vitro stability study of organosilane self-assemble monolayers and multilayers”, Journal of Colloid and Interface Science 291, 438–447, 2005.
    [118]. McDermott M. T., Green J. D., Porter M. D., “Scanning Froce Microscopic Exploration of the Lubrication Capabilities of n-Alkanethiolate Monolayers Chemisorbed at Gold: Structural Basis of Microscopic Friction and Wear”, Langmuir, Vol. 13, pp. 2504-2510, 1997.
    [119]. Lio A., Charych D. H., Salmeron M., “Comparative Atomic Force Microscopy Study of the Chain Length Dependence of Frictional Properties of Alkanethiol on Gold and Alkylsilanes on Mica”, J. Phys. Chem. B, Vol. 101, pp. 3800-3805, 1997.
    [120]. Chen L. J., Tsai Y. H., Liu C. S., Chiou D. R., Yeh M. C., “Effect of water content in solvent on the critical temperature in the formation of self-assembled hexadecyltrichlorosilane monolayers on mica”, Chemical physics letters 346, 241-245, 2001.
    [121]. Peanasky J., Schneider H. M., Granick S., Kessel C. R., “Self-Assembled Monolayers on Mica for Experiments Utilizing the Surface Forces Apparatus”, Langmuir 11, 953-962, 1995.
    [122]. Lambert, A. G., Neivandt, D. J., McAloney, R. A., Davies, P. B., “A Protocol for the Reproducible Silanization of Mica Validated by Sum Frequency Spectroscopy and Atomic Force Microscopy “ Langmuir 16, 8377-8382, 2000.
    [123]. Wasserman S. R., Tao, Y. T., Whiteside, J. M. “Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon subtrates”, Langmuir 5, 1074-1087, 1989.
    [124]. Hoffmann H., Mayer U., Kischanitz A., “Structure of alkysiloxane monolayers on silicon surfaces investigated by external reflection infrared spectroscopy”, Langmuir 11,1304-1312, 1995.
    [125]. Grange J. D., Markham J. L., Kurkjian C. R.,”Effects of surface hydration on the deposition of silane monolayers on silica”, Langmuir 9, 1749-1753, 1993.
    [126]. McGoven M. E., Kallury, K. M. R., Thompson M., “Role of solvent on the silanization of glass with octadecyltrichlorosilane”, Langmuir, 10, 3607-3614, 1994.
    [127]. Bain C., Whitesides G.,” Modeling Organic Surfaces with Self-Assembled Monolayers”, Angew. Chem., Int. Ed. Engl., 28, 506-512, 1989.
    [128]. Michael K., Vernekar V., Keselowsky B., Meredith J., Latour R., Garcia A.,” Adsorption-Induced Conformational Changes in Fibronectin Due to Interactions with Well-Defined Surface Chemistries”, Langmuir, 19, 8033-8040, 2003.
    [129]. Wang M., Palmer L., Schwartz J., Razatos A., “Evaluating Protein Attraction and Adhesion to Biomaterials with the Atomic Force Microscope”, Langmuir 20, 7753-7759, 2004.
    [130]. Wallwork M., Smith D., Zhang J.,” Complex Chemical Force Titration Behavior of Amine-Terminated Self-Assembled Monolayers”, Langmuir 17, 1126-1131, 2001.
    [131]. Li L., Chen S., Jiang S.,” Protein Adsorption on Alkanethiolate Self-Assembled Monolayers: Nanoscale Surface Structural and Chemical Effects ”, Langmuir 19, 2974-2982, 2003.
    [132]. Li L., Chen S., Jiang S.,“ Molecular-Scale Mixed Alkanethiol Monolayers of Different Terminal Groups on Au(111) by Low-Current Scanning Tunneling Microscopy“, Langmuir 19, 3266-3271, 2003.
    [133]. Fan F., Maldarelli C., Couzis A., “Fabrication of Surfaces with Nanoislands of Chemical Functionality by the Phase Separation of Self-Assembling Monolayers on Silicon”, Langmuir 19, 3254-3265, 2003.
    [134]. Petri D. F. S., Wenz G., Schunk P., Schimmel T., “An Improved Method for the Assembly of Amino-Terminated Monolayers on SiO2 and the Vapor Deposition of Gold Layers”, Langmuir 15, 4520-4523, 1999.
    [135]. Huang J., Hemminger John. C., “Photooxidation of thiols in self-assembled monolayers on gold”, J. Am. Chem. SOC., 115, 3342-3343, 1993.
    [136]. Tarlov M. J., Burgess Jr. D. R. F., Gillen G., “UV photopatterning of alkanethiolate monolayers self-assembled on gold and silver”, J. Am. Chem. SOC., 115, 5305-5306, 1993.
    [137]. Ostuni E., Chapman R. G., Holmlin R. E., Takayama S., Whitesides G. M., Langmuir 17, 5605 (2001).
    [138]. Li L., Chen S., Jiang S., “Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption”, J. Biomater. Sci. Polymer Edn, 18, 1415–1427, 2007.
    [139]. Gizeli E., Lowe C. R. (ed.), “Biomolecular Sensors” (Taylor &Francis, London, 2002)
    [140]. Seu K. J., Pandey A. P., Haque F., Proctor E. A., Ribbe A. E., Hovis J. S., "Effect of Surface Treatment on Diffusion and Domain Formation in Supported Lipid Bilayers", Biophysical Journal 92, 2445–2450, 2007.
    [141]. Hahn C.D., Leitner C., Weinbrenner T., Schlapak R., Tinazli A., Tampe R., Lackner B., Steindl C., Hinterdorfer P., Gruber H.J., Holzl M.,“ Self-assembled monolayers with latent aldehydes for protein immobilization“, Bioconjug. Chem. 18, 247–253, 2007.
    [142]. Jelinek R., Kolusheva S.,” Carbohydrate biosensors”, Chem. Rev. 104, 5987–6015, 2004.
    [143]. Kafi A.K.M., Lee D.Y., Park S.H., Kwon Y.S.,” Development of a peroxide biosensor made of a thiolated-viologen and hemoglobin-modified gold electrode ”, Microchem. J. 85, 308–313, 2007.
    [144]. Fujii S., Kurokawa S., Murase K., Lee K.-H., Sakai A., Sugimura H.,” Self-assembled mixed monolayer containing ferrocenylthiol molecules: STM observations and electrochemical investigations”, Electrochimica Acta, 52, 4436-4442, 2007.
    [145]. Liedberg B., Tengvall P., “Molecular Gradients of .omega.-Substituted Alkanethiols on Gold: Preparation and Characterization”, Langmuir 11, 3821-3827, 1995
    [146]. Boozer C., Chen S., Jiang S., “Controlling DNA Orientation on Mixed ssDNA/OEG SAMs”, Langmuir 22, 4694-4698, 2006.
    [147]. Boozer C., Ladd J., Chen S., Yu Q., Homola J., Jiang S.,”DNA Directed Protein Immobilization on Mixed ssDNA/Oligo(ethylene glycol) Self-Assembled Monolayers for Sensitive Biosensors”, Anal. Chem. 76, 6967-6972, 2004.
    [148]. Li L., Chen S., Jiang S., “Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption”, J. Biomater. Sci. Polymer Edn, 18, 1415–1427, 2007.
    [149]. Li L., Chen S., Oh S., Jiang S.,“ In situ single-molecule detection of antibody-antigen binding by tapping-mode atomic force microscopy“, Anal. Chem., 74, 6017-6022, 2002.
    [150]. Blanco M., Peinado A. C. Mas J., “Analytical Monitoring of Alcoholic Fermentation Using NIR Spectroscopy”, Biotechnology and bioengineering, 88, 543-546, 2004.
    [151]. Saphire EO, Stanfield RL, Crispin MD, Parren PW, Rudd PM, Dwek RA, Burton DR, Wilson IA.,“Contrasting IgG structures reveal extreme asymmetry and flexibility”, J. Mol. Biol., 319, 9–18, 2002.
    [152]. Lahiri J., Isaacs L., Tien J., Whitesides. G. M.,” A Strategy for the Generation of Surfaces Presenting Ligands for Studies of Binding Based on an Active Ester as a Common Reactive Intermediate: A Surface Plasmon Resonance Study”, Anal. Chem. 71, 777-790, 1999.
    [153]. Mandelkern M., Elias J. G., Eden D., Crothers D. M., “The dimensions of DNA in solution”, J Mol Biol, 152, 153–161, 1981.
    [154]. Wang Z. H., Viana A. S., Jin G., Abrantes L. M.,” Immunosensor interface based on physical and chemical immunoglobulin G adsorption onto mixed self-assembled monolayers”, Bioelectrochemistry 69, 180–186, 2006.
    [155]. Klein E., Kerth P., Lebeau L.,“ Enhanced selective immobilization of biomolecules onto solid supports coated with semifluorinated self-assembled monolayers“, Biomaterials 29, 204–214, 2008.
    [156]. Nam Y.S., Park K.W., Lee W. H., Choi J.W.,” Fabrication and electrical characteristics of ferredoxin adsorbed poly- -lysin/11-MUA hetero-self-assembly layer”, Mater. Sci. Eng. C 24, 95–98, 2004.
    [157]. Jang L.S., Keng H.K.,“ Modified fabrication process of protein chips using a short-chain self-assembled monolayer“, Biomed. Microdev. 10, 203–211, 2008.
    [158]. Mendes R.K., Carvalhal R.F., Kubota L.T.,” Effects of different self-assembled monolayers on enzyme immobilization procedures in peroxidase-based biosensor development”, J. Electroanal. Chem. 612, 164–172, 2008.
    [159]. Wrobel N., Deininger W., Hegemann P., Mirsky V.M.,“ Covalent immobilization of oligonucleotides on electrodes“, Colloids Surf. B 32, 157–162, 2003.
    [160]. Zhong X., Yuan R., Chai Y., Liu Y., Dai J., Tang D., “Glucose biosensor based on self-assembled gold nanoparticles and double-layer 2d-network (3-mercaptopropyl)-trimethoxysilane polymer onto gold substrate“, Sens. Actuators B 104, 191-198, 2005.
    [161]. Vidal J.C., Espuelas J., Ruiz E.G., Castillo J.R.,” Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and the electrocatalytic effect of Prussian-Blue layers helped with self-assembled monolayers”, Talanta 64, 655-664, 2004.
    [162]. Sirkar K., Revzin A., Pishko M.V.,“ Glucose and Lactate Biosensors Based on Redox Polymer/Oxidoreductase Nanocomposite Thin Films“, Anal. Chem. 72, 2930-2936, 2000.
    [163]. Hasunuma T., Kuwabata S., Fukusaki E., Kobayashi A.,” Real-Time Quantification of Methanol in Plants Using a Hybrid Alcohol Oxidase−Peroxidase Biosensor”, Anal. Chem. 76, 1500-1506, 2004.
    [164]. Gupta G., Rajendran V., Atanassov P.,” Laccase Biosensor on Monolayer-Modified Gold Electrode”, Electroanalysis 15, 1577-1583, 2003.
    [165]. Pan S., Rothberg L.,” Chemical Control of Electrode Functionalization for Detection of DNA Hybridization by Electrochemical Impedance Spectroscopy”, Langmuir 21, 1022–1027, 2005.
    [166]. Li Z. H., Hayman R. B., Walt D. R.,” Detection of Single-Molecule DNA Hybridization Using Enzymatic Amplification in an Array of Femtoliter-Sized Reaction Vessels”, J. Am. Chem. Soc. 130, 12622-12623, 2008.
    [167]. Shin J. K., Kim D. S., Park H. J., Lim G.,” Detection of DNA and Protein Molecules Using an FET-Type Biosensor with Gold as a Gate Metal”, Electroanalysis 16, 1912-1918, 2004.
    [168]. Dharuman V., Hahn J. H., Park H. J., Lim G.,“ Effect of short chain alkane diluents on the label free electrochemical DNA hybridization discrimination at the HS-ssDNA/diluent binary mixed monolayer in presence of cationic intercalators“, Sens. Actuators B 127, 536-544, 2007.
    [169]. Soon J. O., Bong J. H., Kwan Y. C., Joon W. P., ”Surface Modification for DNA and Protein Microarrays”, A Journal of Integrative Biology 10, 327-343, 2006.
    [170]. Jung Y., Jin Y. J., Bong H. C., “Recent advances in immobilization methods of antibodies on solid supports”, Analyst, 133, 697-701, 2008.
    [171]. Choi, J.W., Kim, Y.K., Oh, B.K., ” The development of protein chip using protein G for the simultaneous detection of various pathogens”, Ultramicroscopy 108, 1396-1400, 2008.
    [172]. Gizeli E., C.R. Lowe, "Biomolecular Sensors" CRC Press, 2002
    [173]. Chien F.C., J.S. Liu, H.J. Su, L.A. Kao, C.F. Chiou, W.Y. Chen and S.J. Chen,” An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing,” Chemical Physics Letters, 397, 429–434, 2004.
    [174]. Zhao Y.D., D.W. Pang, S. Hu, Z.L. Wang, J.K. Cheng and H.P. Dai, “DNA-modified electrodes; part 4: optimization of covalent immobilization of DNA on self-assembled monolayers”, Talanta, 49, 751–756, 1999.
    [175]. Fixe F., A. Faber, D. Gonçalves, D.M.F. Prazeres, R. Cabeça, V. Chu, G. Ferreira and J.P. Conde, “Thin film micro arrays with immobilized DNA for hybridization analysis“, Material Research Society Symposium Proceedings, 723, O2.3.1- O2.3.6, 2002.
    [176]. Karlsson, R., A. Falt, ”Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors”, J Immunol. Methods, 200,121-133, 1997.
    [177]. Cavic B.A., M.E. McGovern, R. Nisman and M. Thompson, “High surface density immobilization of oligonucleotide on silicon,” Analyst, 126 485–490, 2001.
    [178]. Zammatteo N., L. Jeanmart, S. Hamels, S. Courtois, P. Louette, L. Hevesi and J. Remacle, “Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays,” Anal. Biochem. 280, 143–150, 2000.
    [179]. Lamture J.B., K.L. Beatie, B.E. Burke, H.D. Eggero, D.J. Ehrlich and R. Fowler, “Direct detection of nucleic acid hybridization on the surface of a charge couple device,” Nucleic Acids Research, 22, 2121–2125, 1994.
    [180]. Lobert P.E., D. Bourgeois, R. Pampin, A. Akheyar, L.M. Hagelsieb, D. Flandre and J. Remacle, “Immobilization of DNA on CMOS compatible materials,” Sensors and Actuators B, 92, 90–97, 2003.
    [181]. Vaková R., A. Gaudinová, H. Süssenbeková, P. Dobrev, M. Strnad, J. Holík and J. Lenfeld, “Comparison of oriented and random antibody immobilization in immunoaffinity chromatography of cytokinins”, Journal of Chromatography A, 811, 77-84, 1998.
    [182]. Bílková Z., J. Mazurová, J. Churáek, D. Horák and J. Turková,” Oriented immobilization of chymotrypsin by use of suitable antibodies coupled to a nonporous solid support, “Journal of Chromatography A, 852, 141-149, 1999.
    [183]. Nisnevitch M., M. Kolog-Gulco, D. Trombka, B.S. Green and M.A. Firer, “Immobilization of antibodies onto glass wool”, Journal of Chromatography B, 738, 217–223, 2000.
    [184]. Emanuele Ostuni, Robert G. Chapman, R. Erik Holmlin, Shuichi Takayama, and George M. Whitesides, “A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein”, Langmuir, 17, 5605-5620, 2001.
    [185]. Vermette P., L. Meagher, Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces, 28, 153-198, 2003.
    [186]. Zhang Z., T. Chao, S. F. Chen, S. Y. Jiang, “Super low fouling sulfobetaine and carboxybetaine polymers on glass slides”, Langmuir, 22, 10072-10077, 2006.
    [187]. Yung Chang, Shih-Chieh Liao, Akon Higuchi, Ruoh-Chyu Ruaan, Chih-Wei Chu and Wen-Yih Chen ,” A Highly Stable Nonbiofouling Surface with Well-Packed Grafted Zwitterionic Polysulfobetaine for Plasma Protein Repulsion”, Langmuir, 24, 5453-5458, 2008.
    [188]. 97年全國死亡統計分析公告,行政院衛生署,2009
    [189]. American Diabetes Association, Economic Costs of Diabetes in the U.S. in 2002, Diabetes Care 26, 917-932, 2003.
    [190]. Diabetes Control and Complications Trial Research Group “The Effect of IntensiveTreatment of Diabetes on the Development and Progression of Long-TermComplications in Insulin-Dependent Diabetes Mellitus” N Engl J Med. 329, 1035-1036, 1993.
    [191]. 蔡世澤、王朝弘、林瑞祥、陳秀熙、董道興代表糖尿病衛教學會調查小組報告糖尿病全程照護品管調查初報。中華民國糖尿病衛教學會2002年年會會刊13-14.
    [192]. Little R. R., Rohlfing C. L., Wiedmeyer H. M., Myers G. L., Sacks D. B., Goldstein D. E., “The National Glycohemoglobin Standardization Program (NGSP): a five-year progress report”, Clin Chem 47, 1985–1992, 2001
    [193]. Jeppsson1 J. O., Kobold U., Barr J., Finke A., Hoelzel W., Hoshino T., Miedema K., Mosca A., Mauri P., Paroni R., Thienpont L., Umemoto M., Weykamp C., “Approved IFCC Reference Method for the Measurement of HbA1c in Human Blood”, Clin Chem Lab Med, 40, 78–89, 2002.
    [194]. Pravatmuang P. , Sae-Ngow B. , Whanpuch T. , Leowattana W., “Effect of HbE and HbH on HbA1C level by ionic exchange HPLC comparing to immunoturbidimetry”, Clinica Chimica Acta, 313, 171–178, 2001.
    [195]. Dorchy H., Roggemans M. P., “Improvement of the compliance with blood glucose monitoring in young insulin-dependent diabetes mellitus patients by the sensorlink system”, Diabetes Reserarch and Clinical Practice, 36, 77-82, 1997.
    [196]. Jeppsson J. O., Jerntorp P., Sundkvist G., Englund H., Nylund V., “Measurement of Hemoglobin A1c by a new liquid-chromatographic assay: methodology, clinical utility, and relation to glucose tolerance evaluated”, Clin. Chem. 32, 1867-1872, 1986.
    [197]. Revenent M. C., “Hemoglobine glyquee: method de dosage et interet“, Lyon Pharmaceutique, 48, 286-292, 1997.
    [198]. Shouhai G., Wei W., Binghe W., “Building fluorescent sensors for carbohydrates using template-directed polymerizations”, Bioorg. Chem. 29, 308–320, 2001.
    [199]. dela M.B., Guntinas C., Wissiack R., Bordin G., Rodrı’guez A.R., “Determination of haemoglobin A1c by liquid chromatography using a new cation-exchange column”, J. Chromatogr. B 791, 73–83, 2003.
    [200]. Weykamp C. W., Penders T. J., Siebelder C. W. M., Muskiet F. A. J., Slik W. V. D., “Interference of carbamylated and acetylated hemoglobins in assays of glycohemoglobin by HPLC, electrophoresis, affinity chromatography, and enzyme immunoassay”, Clin. Chem. 39, 138–142, 1993.
    [201]. Koskinen L. K., “Specificity of hemoglobin A1c measurement by cation exchange liquid chromatography: Evaluation of a Mono S column method”, Clin. Chim. Acta 253, 159–169, 1996.
    [202]. Reid H. L., Famodu A. A., Photiades D. P., Osamo O. N., “Glycosylated haemoglobin HbA1c and HbS1c in non-diabetic Nigerians “, Trop. Geogr. Med. 44, 126–130, 1992.
    [203]. Little R. R., Vesper H., Rohlfing C. L., Ospina M., “Validation by a mass spectrometric reference method of use of boronate affinity chromatography to measure glycohemoglobin in the presence of hemoglobin S and C traits”, Clin. Chem. 51, 264–265, 2005.
    [204]. Lorand J. P., Edwards J. O., “Polyol Complexes and Structure of the Benzeneboronate Ion”, j. org. chem., 24, 769-774, 1959.
    [205]. Pizer R., Babcock L., “Mechanism of the complexation of boron acids with catechol and substituted catechols”, Inorganic Chemistry, 16, 1677-1681, 1977.
    [206]. Norrild, J. C., Eggert, H., “Evidence for mono- and bisdentate boronate complexes of glucose in the furanose form: Application of 1JC–C coupling constants as a structural probe”, J. Am. Chem. Soc., 117, 1479-1484, 1995.
    [207]. Norrild, J. C., Eggert, H.,”Boronic acids as fructose sensors: Structure determination of the complexes involved using J coupling constants”, J. Chem. Soc. Perkin Trans. 2, 2583-2588, 1996.
    [208]. Bosch L. I., Fyles T. M., James T. D.” Binary and ternary phenylboronic acid complexes with saccharides and Lewis bases”, Tetrahedron, 60, 11175-11190, 2004.
    [209]. Norrild J. C., “An illusive chiral aminoalkylferroceneboronic acid. Structural assignment of a strong 1:1 sorbitol complex and new insight into boronate–polyol interactions”, J. Chem. Soc. Perkin Trans. 2, 719-726, 2001.
    [210]. Pribyl J., Skladal P., “Quartz crystal biosensor for detection of sugars and glycated hemoglobin”, Analytica Chimica Acta 530, 75-84, 2005.
    [211]. Springsteen G., Wang B., “A detailed examination of boronic acid –diol complexation”, Tetrahedron 58, 5291-5300, 2002.
    [212]. Yun J., Springsteen G., Deeter S., Wang B., “The Relationship Among pKa, pH, and Binding Constants in the Interactions Between Boronic Acids and Diols –it is not as simple as it appears”, Tetrahedron 60, 11205-11209, 2004.
    [213]. Matsumoto M., Ueba K., Kondo K., “Separation of sugar by solvent extraction with phenylboronic acid and trioctylmethylammonium chloride”, Separation and Purification Technology 43, 269-274, 2005.
    [214]. Soh N., Sonezaki M., Imato T., “Modification of a thin gold film with boronic acid membrane and its application to a saccharide sensor based on surface plasmon resonance”, Electroanalysis 15, 1281-1290, 2003.
    [215]. Mannsfeld S. C. B., Canzler T. W., Fritz T., Proehl H., Stumpf K. L., Goretzki G., Gloe K., “The Structure of [4-(Phenylazo)phenoxy] hexane-1-thiol Self-Assembled Monolayers on Au(111)”, J. Phys. Chem. B, 106, 2255-2260, 2002.
    [216]. Duin M. V., Peters J. A., Kieboom A. P. G., Bekkum H. V., “Studies on borate esters 1 : The ph dependence of the stability of esters of boric acid and borate in aqueous medium as studied by 11B NMR ”, Tetrahedron, 40, 2901-2911, 1984.
    [217]. Landers J. P., Oda R. P., Schuchard M. D.,“ Separation of boron-complexed diol compounds using high-performance capillary electrophoresis“, Anal. Chem., 64, 2846–2851, 1992.
    [218]. Campbell M. K. (ed.), “Biochemistry3rd”, Saunders College Publishing, Philadelphia, 1999.
    [219]. Alcamo E. (ed.), “DNA Technology 2nd: The awesome skill”, Academic, San Diego, 2001.
    [220]. Weaver R. F. (ed.), “Molecular Biology”, WCB McGraw-Hill, Boston, 1999.
    [221]. Berre V. L., visiol E. T., FrancËois J.,“ Dendrimeric coating of glass slides forsensitive DNA microarrays analysis, ”Nucleic Acids Research, 31, 16, e88, 2003.
    [222]. OH S. J., Park J. W., “Surface Modification for DNA and Protein Microarrays,” OMICS A Journal of Integrative Biology 10, 327-343, 2006.
    [223]. Samoc M., Samoc A., Grote J. G., “Complex nonlinear refractive index of DNA,” Chemical Physics Letters 431, 132–134, 2006.
    [224]. Niu S., Saraf R. F., “Label-less fluorescence-based method to detect hybridization with applications to DNA micro-array”, Biosensor and Bioelectronics 23, 714-720, 2007.
    [225]. Nabok S., Higson P. J., “ The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry ”, Biosensors and Bioelectronics 23, 377–383, 2007.
    [226]. Demirel G., Kin E. P., “A novel DNA biosensor based on ellipsometry ”, Surface Science 602, 952-959, 2008.
    [227]. Homola J., Gauglitz G., “Surface plasmon resonance sensors: review ” , Sensors and Actuators B 54, 3–15, 1999.
    [228]. Campbell C. T., Kim G., “Review: SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380–2392, 2007.
    [229]. Mavri J., Franko M., “Application of chromogenic reagents in surface Plasmon resonance (SPR),” Biosensors and Bioelectronics 22, 1163–1167, 2007.
    [230]. Feltis B. N., Davis T. J., “A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents”, Biosensors and Bioelectronics 23, 1131–1136, 2008.
    [231]. Gilbert S. C. D., Wise S. J., Batey R. T., "Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain," J. Mol. Biol. 359, 754-768, 2006.
    [232]. Noeske B. J., Furtig B., Nasiri H. R., Schwalbe H., Wohnert J., "Interplay of ''induced fit'' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch," Nucleic Acids Research 35, 572-583, 2007.
    [233]. Muller W. J. E., Weichenrieder O., Suess B., "Thermodynamic characterization of an engineered tetracycline-binding riboswitch," Nucleic Acids Research 34, 2607-2617, 2006.
    [234]. Hawe A., Wolfgang F. S., "Formulation Development for Hydrophobic Therapeutic Proteins." Pharmaceutical Development and Technology 12, 223 – 237, 2007.
    [235]. Dockal M., Carter D. C., Ruker F., "The Three Recombinant Domains of Human Serum Albumin. Structural Characterization and Ligand Binding Properties." J. Biol. Chem. 274, 29303-29310, 1999.
    [236]. Dockal M., Carter D. C., Ruker F., "Conformational Transitions of the Three Recombinant Domains of Human Serum Albumin Depending on pH." J. Biol. Chem. 275, 3042-3050, 2000.
    [237]. Chuang V. T. G., Hijioka M., Katsuki M., Nishi K., Hara T., Kaneko K. I., Ueno M., Kuniyasu A., Nakayama H., Otagiri M., "Characterization of benzodiazepine binding site on human [alpha]1-acid glycoprotein using flunitrazepam as a photolabeling agent", Biochimica et Biophysica Acta - General Subjects 1725, 385-393, 2005.
    [238]. Adachi K., Watarai H., "Binding Behavior of Subphthalocyanine-Tagged Testosterone with Human Serum Albumin at the n-Hexane/Water Interface." Anal. Chem. 78, 6840-6846, 2006.
    [239]. Gotti R., Bertucci C., Andrisano V., Pomponio R., Cavrini V., "Study of donepezil binding to serum albumin by capillary electrophoresis and circular dichroism." Analytical and Bioanalytical Chemistry 377, 875-879, 2003.
    [240]. Santra M. K., Banerjee A., Rahaman O., Panda D., "Unfolding pathways of human serum albumin: Evidence for sequential unfolding and folding of its three domains." International Journal of Biological Macromolecules 37, 200-204, 2005.
    [241]. Pease A. C., Solas D., Sullivan E. J., Cronin M. T., Holmes C. P., Fodor P. A. “Light-generated oligonucleotide arrays for rapid DNA sequence analysis”, Proc. Natl. Acad. Sci. USA 91, 5022-5026, 1994.
    [242]. Schena M., Shalon D., Davis R. W. Brown P. O.,” Quantitative monitoring of gene expression patterns with a complementary DNA microarray”, Science 270, 467-470, 1995.

    QR CODE
    :::