| 研究生: |
孫彬修 Pin-Hsiu Sun |
|---|---|
| 論文名稱: |
線性複合模式應用於變遷偵測之研究 Application of Linear Mixing Model for Change Detection |
| 指導教授: |
陳繼藩
Chi-Farn Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 變遷偵測 、線性複合模式 |
| 外文關鍵詞: | Linear Mixing Model, Change Detection |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著衛星影像的持續接收,利用衛星影像進行土地變遷偵測更趨頻繁,為使變遷偵測朝向高精度及高效率,變遷偵測的方法不斷的提出。本論文使用多時期分類法進行變遷偵測,以線性複合模式作為分類器,最小二乘子空間投影法作為求解方式,產生變遷類別影像,稱為單層次線性複合模式變遷偵測法。但由於單層次線性複合模式具有變遷組合類別數必須小於合併影像波段數限制,因此本論文進一步以多層次(Multi-Level)線性複合模式進行變遷偵測。本論文測試3組影像,使用多層次線性複合模式進行變遷偵測,其模擬影像變遷偵測整體精度達到90%以上,SPOT衛星影像變遷偵測整體精度達到80%以上。因此預期多時期衛星影像,以複性複合模式作為變遷偵測方式,不失為一個可實際應用的方法。
The usage of satellite images for land cover change detection has been an important task for environment monitoring. In this paper, we use multi-temporal satellite images and classifier to detect change regions. The classifier is Linear Mixing Model (LMM) with Least Square Orthogonal Subspace Projection (LSOSP). LMM is a model to descript classes in the image, and LSOSP is one of the methods to solution the LMM. It is proposed to detect the signal of the desired land-cover materials and eliminate the undesired signatures. Finally, an intensity image would be obtained to represent the intension of the desired signatures. However, this method cannot discriminate classes more than the number of bands of the combined image. Therefore, we proposed multi-level linear mixing model to solve this problem. The test data of this study include one simulation image and two SPOT4 satellite images. The overall accuracy is about 80%, and the kappa coefficient is about 0.6. Simulated data and real SPOT images are used for testing, and the results indicate that change detection using LMM is workable.
莊雲翔,”線性複合式於衛星影像中雲層之自動化辨識”,國立中央大學土木工程研究所碩士論文,中壢,1999
Borel, C.C., and S.A.W. Gerstl, “Nonlinear Spectral Mixing Models for Vegetative and Soil Surfaces”, Remote Sensing Environ., Vol.47, 1994
Bosdogianni, P., M. Petrou, and J. Kittler, “Mixture Models with Higher Order Moments”, IEEE Trans. Geosci. Remote Sensing, Vol.35, 1997
Byrne, G.F., P.F. Crapper, and K.K. Mayo, “Monitoring Land-cover Change by Principal Component Analysis of Multitemporal Landsat Data”, Remote Sensing Environ., Vol.10, 175-184, 1980
Harsanyi, J.C., and C.-I. Chang, “ Hyperspectral Image Classification and Dimensionality Reduction: and Orthogonal Subspace Projection Approach”, IEEE Trans. Geosci. Remote Sensing, Vol.32, 1994
Lillesand, T.M., and R.W. Keifer, “Remote Sensing and Image Interpretation”, Second Edition, John Wiley & Sons, 1979
Miller, J.W.V., J.B. Farison, and Y. Shin, “Spatial Invariant Image Sequences”, Remote Sensing Environ., Vol.1, 1992
Richards, J.A., “Thematic Mapping from Multitemporal Image Data using the Principal Components Transformation”, Remote Sensing Environ., Vol.16, 1984
Rubec, C.D., and J. Thie., “Land use Monitoring with Landsat Digital Data in Southwestern Manitoba”, Proceedings of the fifth Canadian Symposium on Remote Sensing, Victoria, BC, 1987, pp. 136-150
Scharf, L.L., “Statistical Signal Processing: Detection Estimation and Time Series Analysis”, Addison-Wesley, MA., 1991
Settle, J. and N. Campbell, “On the Errors of Two Estimators of Sub-pixel Fractional Cover when Mixing is Linear”, IEEE Trans. on Geosci. Remote Sensing, Vol.36, No.1, 1998
Settle, J. and N.A. Drake, “Linear Mixing and the Estimation of Ground Cover Proportions”, Int. J. Remote Sensing, Vol.14, 1993
Singh, A., “Change Detection in the Tropical Forest Environmental of Northern India using Landsat”, Remote Sensing and Tropical Land Management,M.J. Eden and J.T. Parry, Eds. John Wiley & Sons, London, 1986, pp.237-254
Stauffer, M.L. and R.L. McKinney, “Landsat Image Differencing as an Automated Land Cover Change Detection Technique”, Computer Sciences Corporation, Technical Memorandum CSC/TM-78/6215 Silver Spring, MD, 1978
Stow, D. A., L. R. Tinney, and J. E. Estes, “Deriving Land Use/Land Cover Change Statistics form Landsat: A Study of Prime Agricultural Land”, Proceeding of the 14th International Symposium on Remote Sensing of Environment, pp. 1227-1237,1980
Tu, T.-M., C.-H. Chen, and C.-I Chang, “ A Posteriori Least Squares Orthogonal Subspace Projection Approach to Desired Signature Extraction and Detection”, IEEE Trans. Geosci. Remote Sensing, Vol.35, No.1., 1997
Weismiller, R.A., S.J. Kristoof, D.K. Scholz, P.E. Anuta, and S.A. Momen, “Change Detection in Coastal Zone Environments”, Photogrammetric Engineering and Remote Sensing”, Vol.43, pp.1533-1539,1977
Wilson, J. R., C. Blackman, and G. W. Spann, “Land use Change Detection using Ladsat Data”, Proceedings of the 5th Annual Remote Sensing of Earth Resources Conference, University of Tennesses, Tullhama,TN, 1976, pp.79-91
Yamamoto, T., and H. Hiroshi, “A Change Detection Method for Remotely Sensed Multispectral and Multitemporal Image using 3-D Segmentation”, IEEE Trans. Geosci. Remote Sensing, Vol.39 , No.5, May 2001