跳到主要內容

簡易檢索 / 詳目顯示

研究生: 孫彬修
Pin-Hsiu Sun
論文名稱: 線性複合模式應用於變遷偵測之研究
Application of Linear Mixing Model for Change Detection
指導教授: 陳繼藩
Chi-Farn Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 87
中文關鍵詞: 變遷偵測線性複合模式
外文關鍵詞: Linear Mixing Model, Change Detection
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著衛星影像的持續接收,利用衛星影像進行土地變遷偵測更趨頻繁,為使變遷偵測朝向高精度及高效率,變遷偵測的方法不斷的提出。本論文使用多時期分類法進行變遷偵測,以線性複合模式作為分類器,最小二乘子空間投影法作為求解方式,產生變遷類別影像,稱為單層次線性複合模式變遷偵測法。但由於單層次線性複合模式具有變遷組合類別數必須小於合併影像波段數限制,因此本論文進一步以多層次(Multi-Level)線性複合模式進行變遷偵測。本論文測試3組影像,使用多層次線性複合模式進行變遷偵測,其模擬影像變遷偵測整體精度達到90%以上,SPOT衛星影像變遷偵測整體精度達到80%以上。因此預期多時期衛星影像,以複性複合模式作為變遷偵測方式,不失為一個可實際應用的方法。


    The usage of satellite images for land cover change detection has been an important task for environment monitoring. In this paper, we use multi-temporal satellite images and classifier to detect change regions. The classifier is Linear Mixing Model (LMM) with Least Square Orthogonal Subspace Projection (LSOSP). LMM is a model to descript classes in the image, and LSOSP is one of the methods to solution the LMM. It is proposed to detect the signal of the desired land-cover materials and eliminate the undesired signatures. Finally, an intensity image would be obtained to represent the intension of the desired signatures. However, this method cannot discriminate classes more than the number of bands of the combined image. Therefore, we proposed multi-level linear mixing model to solve this problem. The test data of this study include one simulation image and two SPOT4 satellite images. The overall accuracy is about 80%, and the kappa coefficient is about 0.6. Simulated data and real SPOT images are used for testing, and the results indicate that change detection using LMM is workable.

    ABSTRACT IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 影像相減法 3 1.2.2 影像比例法 5 1.2.3 分類後比較法 6 1.2.4 Chi-Square變遷偵測法 7 1.2.5 影像區塊分割變遷偵測法 8 1.2.6 主軸轉換分析法 10 1.2.7 多時期分類法 11 1.3 研究目的與方法概述 12 1.4 章節介紹 14 第二章 線性複合模式 15 2.1 線性複合模式 16 2.2 最小二乘子空間投影法 22 2.2.1 材質訊號投影過程 23 2.3.2 正交子空間投影法 27 2.3.3 最大訊雜比 29 第三章 線性複合模式於變遷偵測 33 3.1 單層次線性複合模式 34 3.1.1多時期影像合併 38 3.1.2類別決定及材質矩陣 39 3.1.3線性複合模式求解 40 3.1.4二元化影像 40 3.1.5 影像標定 40 3.2 多層次線性複合模式 42 3.2.1 多層次線性複合模式 42 3.2.2 多時期影像合併 44 3.2.3 類別決定 44 3.2.4材質群聚產生 45 3.2.5 線性複合模式求解 48 3.2.6 影像二元化及影像標記 49 3.2.7線性複合模式再求解 50 第四章 測試及成果討論 52 4.1 模擬影像 53 4.1.1影像說明 53 4.1.2 測試成果 56 4.2 SPOT衛星影像 65 4.2.1 影像說明 65 4.2.2 SPOT影像Ⅰ 67 4.2.3 SPOT影像Ⅱ 73 4.3 成果討論 80 4.3.1 模擬影像 80 4.3.2 SPOT影像 81 第五章 結論及未來展望 83 5.1 結論 83 5.2 建議 84 文獻回顧 86

    莊雲翔,”線性複合式於衛星影像中雲層之自動化辨識”,國立中央大學土木工程研究所碩士論文,中壢,1999
    Borel, C.C., and S.A.W. Gerstl, “Nonlinear Spectral Mixing Models for Vegetative and Soil Surfaces”, Remote Sensing Environ., Vol.47, 1994
    Bosdogianni, P., M. Petrou, and J. Kittler, “Mixture Models with Higher Order Moments”, IEEE Trans. Geosci. Remote Sensing, Vol.35, 1997
    Byrne, G.F., P.F. Crapper, and K.K. Mayo, “Monitoring Land-cover Change by Principal Component Analysis of Multitemporal Landsat Data”, Remote Sensing Environ., Vol.10, 175-184, 1980
    Harsanyi, J.C., and C.-I. Chang, “ Hyperspectral Image Classification and Dimensionality Reduction: and Orthogonal Subspace Projection Approach”, IEEE Trans. Geosci. Remote Sensing, Vol.32, 1994
    Lillesand, T.M., and R.W. Keifer, “Remote Sensing and Image Interpretation”, Second Edition, John Wiley & Sons, 1979
    Miller, J.W.V., J.B. Farison, and Y. Shin, “Spatial Invariant Image Sequences”, Remote Sensing Environ., Vol.1, 1992
    Richards, J.A., “Thematic Mapping from Multitemporal Image Data using the Principal Components Transformation”, Remote Sensing Environ., Vol.16, 1984
    Rubec, C.D., and J. Thie., “Land use Monitoring with Landsat Digital Data in Southwestern Manitoba”, Proceedings of the fifth Canadian Symposium on Remote Sensing, Victoria, BC, 1987, pp. 136-150
    Scharf, L.L., “Statistical Signal Processing: Detection Estimation and Time Series Analysis”, Addison-Wesley, MA., 1991
    Settle, J. and N. Campbell, “On the Errors of Two Estimators of Sub-pixel Fractional Cover when Mixing is Linear”, IEEE Trans. on Geosci. Remote Sensing, Vol.36, No.1, 1998
    Settle, J. and N.A. Drake, “Linear Mixing and the Estimation of Ground Cover Proportions”, Int. J. Remote Sensing, Vol.14, 1993
    Singh, A., “Change Detection in the Tropical Forest Environmental of Northern India using Landsat”, Remote Sensing and Tropical Land Management,M.J. Eden and J.T. Parry, Eds. John Wiley & Sons, London, 1986, pp.237-254
    Stauffer, M.L. and R.L. McKinney, “Landsat Image Differencing as an Automated Land Cover Change Detection Technique”, Computer Sciences Corporation, Technical Memorandum CSC/TM-78/6215 Silver Spring, MD, 1978
    Stow, D. A., L. R. Tinney, and J. E. Estes, “Deriving Land Use/Land Cover Change Statistics form Landsat: A Study of Prime Agricultural Land”, Proceeding of the 14th International Symposium on Remote Sensing of Environment, pp. 1227-1237,1980
    Tu, T.-M., C.-H. Chen, and C.-I Chang, “ A Posteriori Least Squares Orthogonal Subspace Projection Approach to Desired Signature Extraction and Detection”, IEEE Trans. Geosci. Remote Sensing, Vol.35, No.1., 1997
    Weismiller, R.A., S.J. Kristoof, D.K. Scholz, P.E. Anuta, and S.A. Momen, “Change Detection in Coastal Zone Environments”, Photogrammetric Engineering and Remote Sensing”, Vol.43, pp.1533-1539,1977
    Wilson, J. R., C. Blackman, and G. W. Spann, “Land use Change Detection using Ladsat Data”, Proceedings of the 5th Annual Remote Sensing of Earth Resources Conference, University of Tennesses, Tullhama,TN, 1976, pp.79-91
    Yamamoto, T., and H. Hiroshi, “A Change Detection Method for Remotely Sensed Multispectral and Multitemporal Image using 3-D Segmentation”, IEEE Trans. Geosci. Remote Sensing, Vol.39 , No.5, May 2001

    QR CODE
    :::