跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊怡芬
Yi-Fen Chuang
論文名稱: 真空紫外微影技術底抗反射層及
Study of bottom anti-reflection coated and Fabry-Perot type anti-reflection coated on photomask for vacuum ultraviolet lithography
指導教授: 李正中
Cheng-Chung Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 90
語文別: 中文
論文頁數: 62
中文關鍵詞: 抗反射層
外文關鍵詞: anti-reflected coating
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 在光罩抗反射層部分,針對真空紫外光波段,成功的設計出一個以Fabry-Perot 結構為基礎的二元式光罩(Binary Mask)抗反射層結構。抗反射層結構是由鉻(Cr)/二氧化矽(SiO2)/鉻(Cr)堆疊所組成的。藉著調整這三層膜層的厚度,在波長193nm及157nm的反射率皆能小於2%。此種光罩抗反射層結構跟傳統的光罩抗反射層二氧化鉻(Cr2O3)/鉻(Cr)最大的不同處在於:頂部的金屬鉻膜將可避免因電子束直寫所造成的電子累積效應。
    底抗反射層技術的部分,此底抗反射層為雙層結構(Bilayer),是由二氧化矽(TEOS Oxide,SiO2)/氮化矽(SiN)堆疊所組成的。此兩膜層均是利用電漿輔助化學氣相沈積系統製鍍。藉著控制氮化矽的厚度,在波長157nm或是寬帶(Broadband)157nm~193nm的反射率分別可以降至1%及3%以下。


    There are two major parts in this thesis. One is to establish the anti-reflection coating technique for using in vacuum ultraviolet photomask . The other is to investigate the bottom anti-reflection coating.
    In the development of the anti-reflection coating technique for photomask applications, we demonstrated an anti-reflection coating structure for vacuum ultraviolet binary mask , which is based on three layers Fabry-Perot structure . The anti-reflection coating structure is composed of Chrome (Cr) / Oxide (SiO2) / Chrome (Cr) stack. After adding different optimization , reflectance of less than 2% at both 193 nm and 157 nm have been achieved. At the three-layer Fabry-Perot structure, the bottom chrome layer provides suitable absorption. By controlling the thickness of the intermediate silicon oxide layer, we can tune the minimum reflection regime to the desired exposure wavelength. The top metal layer can prevent charge accumulation during e-beam writing .The difference between the Fabry-Perot structure and traditional structure Chrome Oxide (Cr2O3 ) / Chrome (Cr) is that the top metal layer can prevent charge accumulation during e-beam writing. The structures are therefore expected to have great potential as antireflective coating structure in high performance binary mask.
    In the development of the bottom anti-reflection coating technique , the thinfilm structure is bilayer which is composed of TEOS Oxide (SiO2) / Silicon Nitride (SiN) both are deposited by Plasma Enhanced Chemical Vapor Deposition , PECVD . By changing the thickness of thinfilms , reflectance can be reduced to less than 1% and 3% at 157nm and broadband of 193 nm to 157 nm respectively .

    摘要 Ⅰ 致謝辭 Ⅲ 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 Ⅸ 第一章 緒論 1 第二章 基本原理 7 2.1 光罩的抗反射層技術 7 2.1.1 光學微影成像解析度的限制 7 2.1.2 空間影像與對比度 9 2.1.3 傳統二元式光罩(binary mask)的基本結構與原理 10 2.1.4 Fabry-Perot 基本結構與原理 11 2.1.5 二元式光罩材料所需具備的條件 12 2.2 抗反射層技術 (Anti-Reflection Coating , ARC) 16 2.2.1 光反射引起效應之說明 16 2.2.2 抗反射層之設計原理 19 2.2.3 表層抗反射層 23 2.2.4 底層抗反射層 25 2.3 抗反射層材料 26 第三章 Fabry-Perot型光罩抗反射層實驗及結果分析 27 3.1 實驗設備 27 3.2 控制參數 28 3.3 膜層結構 28 3.4 實驗步驟 29 3.4.1 決定二元式光罩合適的材料及其厚度 29 3.4.2 沈積薄膜 29 3.4.3 量測R值 29 3.5 實驗結果與討論 30 3.5.1 Fabry-Perot 抗反射結構的膜層分析 31 第四章 底層抗反射層實驗及結果分析 40 4.1 實驗設備 40 4.2 製程控制參數 41 4.3 膜層結構 41 4.4 實驗步驟 42 4.4.1 決定底抗反射層合適的材料及其厚度 42 4.4.2 沈積薄膜 42 4.4.3 量測R值 42 4.5 實驗結果與討論 43 4.5.1 針對真空紫外光波段設計之底抗反射層 43 4.5.2 針對深紫外及真空紫外設計寬帶底抗反射層 50 第五章 結論 56 參考文獻 58

    1.K. Suzuki , S. Matsui , and Y Ochiai edited “ Sub-Half-Micron Lithography
    for ULSIs ”, chapter1 , ( Cambridge University Press , Cambridge 2000 )
    2.John Sturtevant and Bernie Roman, “Antireflection strategies for advanced photolithography” Microlithography World, Vol.4 (1995) pp.13-21.
    3. Sang-Soo Choi, Han Sun Cha, Jong-Soo Kim, Jong Mun Park, Doh Hoon Kim, Kag Hyeon Lee, Jinho Ahn, Hai Bin Chung, and Bo Woo Kim, “A novel anti-reflective structure for metal layer patterning,” Proc. of SPIE, Vol. 3333 (1998) pp.336-346.
    4. Yoshio Kawai, Akihiro Otaka, Akinobu Tanaka, and Tadahito Matsuda, “The effect of an organic base in chemically amplified resist on patterning characteristics using KrF lithography,” Jpn. J. Appl. Phys., Vol. 33 (1994) pp.7023-7027.
    5. Moon-Gyu Sung, Young-Mi Lee, Eun-Mi Lee, Young-Soo Sohn, Ilsin An, and Hye-Keun Oh, “Soft bake effect in 193 nm chemically amplified resist,” Proc. of SPIE, Vol. 3999 (2000) pp.1062-1069.
    6. Sung-Eun Hong, Min-Ho Jung, Jae-Chang Jung, Geunsu Lee, Jin-Soo Kim, Cha-Won Koh, and Ki-Ho Baik, “The acidity control for compatibility of novel organic bottom antireflective coating materials with various KrF and ArF photoresists,” Proc. of SPIE, Vol. 3999 (2000) pp.966-973.
    7. C. A. Mack , “Antireflective coatings,” Microlithography World, Vol.3 (1997) pp.29.
    8. Hsuen-Li Chen and Lon A. Wang, “Hexamethyldisiloxane film as the bottom antireflective coating layer for ArF excimer laser lithography,” Applied Optics, Vol. 38 (1999) pp.4885-4890.
    9. Ryoko Yamanaka, Takashi Hattori, Toshiyuki Mine, Keiko Hattori, Toshihiko Tanaka and Tsuneo Terasawa, “Suppression of resist-pattern deformation on SiON bottom antireflective layer in deep-UV lithography,” Proc. of SPIE, Vol. 3678 (1999) pp.198-204.
    10. Etsuko Iguchi, Hiroshi Komano, Toshimasa Nakayama, “A new bottom anti-reflection coating approach for KrF lithography at sub 150 nm design rule,” Proc. of SPIE, Vol. 3999 (2000) pp.521-530.
    11. Jim D. Meador, Xie Shao, Vandana Krishnamurthy, Manuel Arjona, Mandar Bhave, Gu Xu, James Claypool, and Anne Lindgren, “Second-Generation 193 nm Bottom Antireflective Coatings (BARCs),” Proc. of SPIE, Vol. 3999 (2000) pp.1009-1018.
    12. B. J . Lin et al. , Proc. of SPIE ,Vol.1463 (1991)pp.42
    13. C.A.Mack , “Depth of focus”, Microlithography world , (1995)pp.20
    14. 張俊彥主編,鄭晃忠校審,積體電路製程及設備技術手冊第十二章,中華民國產業科技發展協會,中華民國電子材料與元件協會出版1997。
    15. 趙凱華,鍾錫華著,“光學”,儒林圖書有限公司(1992)pp.346-349
    16. 李正中,“薄膜光學與鍍膜技術”,藝軒圖書出版社(1999)pp.37-41
    17. K. Suzuki , S. Matsui , and Y Ochiai edited “ Sub-Half-Micron Lithography for ULSIs ”, chapter1 , ( Cambridge University Press , Cambridge 2000 )
    18. L. F. Thompson, C. G. Willson, M. J. Bowden, “Introduction to Microliithography,” (American Chemical Society publication, Washington D. C. 1994).
    19. Johannes van Wingerden, “Optimisation of substrate reflectivity, resist thickness and resist absorption for CD control and resolution,” Proc. of SPIE, Vol. 3679 (1999) pp.905-913.
    20. C. Y. Chang, and S. M. Sze, “ULSI Technology,” (McGraw-Hill Company publication, New York, 1996).
    21. Byung-Hyuk Jun, Sang-Soo Han, Kyong-Sub Kim, Joon-Sung Lee, Zhong-Tao Jiang, Byeong-Soo Bae, Kwangsoo No, Dong-Wan Kim, Ho-Young Kang, and Young-Bum Koh, “Titanium oxide film for the bottom antireflective layer in deep ultraviolet lithography,” Applied Optics, Vol.36 (1997) pp.1482-1486.
    22. Shuo-Yen Chou, Chien-Ming Wang, Chin-Chiu Hsia, Li-Jui Chen, Gue-Wuu Hwang, Shyh-Dar Lee, and Jen-Chung Lou, “Anti-reflection strategies for sub-0.18μm dual damascene structure patterning on KrF 248 nm lithography,” Proc. of SPIE, Vol. 3679 (1999) pp.923-931.
    23. Satoko Nakaoka, Hisashi Watanabe, and Yoshimitsu Okuda, “Comparison of CD variation between organic and inorganic bottom anti-reflective coating on topographic substrates,” Proc. of SPIE, Vol. 3679 (1999) pp.932-941.
    24. C. H. Lin, L. A. Wang, and H. L. Chen, “Optimized bilayer hexamethyldisiloxane film as bottom antireflective coating for both KrF and ArF lithographies,” J. Vac. Sci. Technol. B, Vol. 18, No. 6 (2000) pp.3323-3327.
    25. A. Schiltz, J-F. Terpan, G. Amblard, and P. J. Paniez, “Bottom Anti-Reflective Coatings for DUV Lithography: Determination of optimum thermal process conditions,” J. Microelectronic Engineering, Vol. 35 (1997) pp.221-224
    .
    26. George E. Bailey, Nicholas K. Eib, Earnest C. Murphy, “Progressions in deep ultraviolet bottom antireflective coatings,” Proc. of SPIE, Vol. 3999 (2000) pp.935-948.
    27. Peter Trefonas, Robert Blacksmith, Charles R. Szmanda, Robert Kavanagh, Tim Adams, Gary N. Taylor, Suzanne Coley, and Gerd Pohlers, “Organic antireflective coatings for 193 nm lithography,” Proc. of SPIE, Vol. 3678 (1999) pp.702-712.
    28. James C. Cox, Lynn Welsh, Deborah Murphy, “Process effects resulting from conversion to a safe-solvent organic BARC,” Proc. of SPIE, Vol. 3333 (1998) pp.1040-1050.
    29. Qizhi He, Wei W. Lee, Maureen Hanratty, Daty Rogers, Guoqiang Xing, Abha Singh, Eden Zieliski, “Inorganic antireflective coating process for deep-UV lithography,” Proc. of SPIE, Vol. 3334 (1998) pp.337-346.
    30. Qun Ying Lin, Alex Cheng, John Sudijono and Charles Lin, “Dual layer inorganic SiON bottom ARC for 0.25μm DUV hard mask applications,” Proc. of SPIE, Vol. 3678 (1999) pp.186-197.
    31. Y. Trouiller, N. Buffet, T. Mourier, Y. Gobil, P. Schiavone, Y. Quere, “Inorganic bottom ARC SiOxNy for interconnection levels on 0.18μm technology,” Proc. of SPIE, Vol. 3333 (1998) pp.324-333.
    32. Tetsuo Gocho, Tohru Ogawa, Masakazu Muroyama and Jun-ichi Sato, “Chemical vapor deposition of anti-reflective layer film for excimer laser lithography,” Jpn. J. Appl. Phys., Vol. 33 (1994) pp.486-490.
    33. Yasunobu Onishi, Yasuhiko Sato, Eishi Shiobara, Seiro Miyoshi, Hideto Matsuyama, Junko Abe, Hideo Ichinose, Tokuhisa Ohiwa, Yoshihiko Nakano, Sawako Yoshikawa, and Shuzi Hayase, “Application of polysilanes for deep UV antireflective coating,” Proc. of SPIE, Vol. 3678 (1999) pp.205-212.
    34 ohru Ogawa, Atsushi Sekiguchi, Noritsugu Yoshizawa, “Advantages of a SiOxNy:H anti-reflective layer for ArF excimer laser lithography,” Jpn. J. Appl. Phys. Vol. 35 (1996) pp.6360-6365.
    35 龍文安,“積體電路微影製程”初版,高力,

    QR CODE
    :::