跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃大慶
Ta-Ching Huang
論文名稱: 振動床於弱振動下顆粒運動機制研究
Motion Mechanisms in the Vibrated Granular Bed Under Weakly Vibration
指導教授: 蕭述三
Shu-San Hsiau
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 79
中文關鍵詞: 振動床弱振動粒子流
外文關鍵詞: Vibrated Bed, Granular Flow, Weak Vibration
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討矩形柱弱振動床中影響顆粒運動之機制與原因。由於振動床的弱振動運動現象在實驗中極易受到各種因素變化的影響,因此本研究以類固體層高度實驗設計探討影響振動床內顆粒運動的因素。探討不同振動條件時,類固體層的高度變化及類液體層的深度變化。
    類固體層高度隨著振動加速度的增強而降低。在低振動頻率情形下,受到振動加速度的影響較為敏感,較小的振動加速度就可以達到充分的類液體化運動狀態;而在中等振動頻率的情形下,類固體層高度與振動加速度的關係,呈現比較緩和的負相關;在高振動頻率的情形下,需要較大的振動加速度才能使顆粒體達到充分類液體化運動狀態。在振動條件比較小的情形下,顆粒體聚集成塊狀如同固體一般,定義為完全類固體化區域。逐步得增強振動加速度,當振動條件超過一臨界值?s時,容器內顆粒體會開始發生類液體化運動現象;持續地增強振動加速度,當振動條件超過一臨界值?l時,容器內顆粒會達到充分類液體化運動現象。
    本論文明確的決定出顆粒振動床在不同振動條件下的三種運動現象,完全類固體化運動區域(Completely Solid-Like Region)、類液體化運動區域(Liquid-Like Region),充分類液體化運動區域(Fully Liquid-Like Region)並獲得各種不同振動頻率下的運動機制振動加速度相圖。


    In vibration granular bed. The study investigated the effects under weakly vibrating mechanisms in a rectangular vibrated bed. The main experiment were performed to study the weakly vibrating mechanisms in a vibrated granular bed. First, the solid-like experiment was performed to investigate the solid-like layer and the minimum vibration acceleration under the different vibration frequencies, which all the particles in the bed moved allover the bed. And the minimum vibration acceleration under the different vibration frequencies, which all the particles in the bed triggered off the bed.
    The three different motion mechanisms were found in this study. The solid-like layer existed in Solid-Like Region motion mechanism where the vibration conditions were weak. In Liquid-Like Region mechanism where the binary mixture of particles. For the stronger vibration conditions, the effects of strength on particles motions in the vibrated granular bed were dominant.

    摘要............................................................................................................. I 誌謝............................................................................................................II 目錄.......................................................................................................... III 附表目錄....................................................................................................V 附圖目錄.................................................................................................. VI 符號說明................................................................................................VIII 第一章 簡介 1 1.1 顆粒流介紹 1 1.1.1顆粒體簡介 1 1.1.2顆粒流與一般流體之差異性 3 1.2 顆粒體在振動床內的現象 7 1.3 功能性梯度材料 12 1.4 研究動機與方向 16 第二章 實驗方法 19 2.1 實驗設備 19 2.2 實驗步驟 25 2.3 實驗原理與方法 30 2.3.1實驗參數 30 2.3.2實驗量測方式及判別方法 32 第三章 結果與討論 34 第四章 結論與未來展望 49 第五章 參考文獻 51 附 表 目 錄 表1: 功能性梯度材料的實際應用範圍 57 附 圖 目 錄 圖1: 功能性梯度材料的特徵圖 58 圖2: 實驗研究流程圖 59 圖3: 實驗裝置圖 60 圖4: 實驗容器示意圖 61 圖5: 實驗顆粒初始配置圖 62 圖6: 類固體層高度及類液體層深度示意圖 63 圖7: 振動頻率為2 kHz、?=7時,類液體化運動區域 大於10 mm實驗示意圖 64 圖8: 振動頻率為2 kHz、?=4時,類液體化運動區域 小於10 mm實驗示意圖 65 圖9: 充分類液體化運動現象實驗示意圖 66 圖10:類固體層高度與振動加速度的關係圖 67 圖11:不同振動頻率下,?s與?l比較的關係圖 68 圖12:類固體層高度與(a/d)對數座標關係圖 69 圖13:類固體層高度與振動速度幅度的關係圖 70 圖14:振動頻率為100 Hz時,各振動條件之紅色玻璃珠 與透明玻璃珠混合層深度與時間的關係圖 71 圖15:振動頻率為200 Hz時,各振動條件之紅色玻璃珠 與透明玻璃珠混合層深度與時間的關係圖 72 圖16:振動頻率為400 Hz時,各振動條件之紅色玻璃珠 與透明玻璃珠混合層深度與時間的關係圖 73 圖17:振動頻率為2 kHz時,各振動條件之紅色玻璃珠 與透明玻璃珠混合層深度與時間的關係圖 74 圖18:振動頻率為3 kHz時,各振動條件之紅色玻璃珠 與透明玻璃珠混合層深度與時間的關係圖 75 圖19:振動頻率為4 kHz時,各振動條件之紅色玻璃珠 與透明玻璃珠混合層深度與時間的關係圖 76 圖20:各振動條件之紅色玻璃珠與透明玻璃珠混合層深度 初始成長速率與?的關係圖 77 圖21:各振動條件之紅色玻璃珠與透明玻璃珠混合層深度 初始成長速率與(a/d)對數座標關係圖 78 圖22:各振動條件下三種運動機制的相圖 79

    第五章 參考文獻
    [1]Neederman, R. M., 1992, Statics and Kinematics of Granular Materials, Cambridge University Press.
    [2]Cundall, P. A., 1979, “A discrete numerical model for granular assemblies,” Geotechnique, Vol. 29, pp. 47-65.
    [3]Campbell, C. S., 1990, “Rapid Granular Flows,” Annu. Rev. Fluid Mech., Vol. 22, pp. 57-92.
    [4]Herrmann, H. J., 1995, “Physics of granular media, Chaos solitons & fractals,” Vol. 6, pp. 203-212.
    [5]Jenkins, J. T. and Savage, S. B., 1983, “A Theory for Rapid Flow of Identical, Smooth, Nearly Elastic Spherical Particles,” J. Fluid Mech.,
    Vol. 130, pp. 187-202.
    [6]Campbell, C. S., 1990, “Rapid Granular Flows,” Annu. Rev. Fluid Mech., Vol. 22, pp. 57-92.
    [7]Campbell, C. S. and Brennen, C. E., 1985b, “Chute Flows of Granular Material: Some Computer Simulations,” J. Appl. Mech., Vol. 52,
    pp. 72-78.
    [8]Reynolds, O., 1885, “On the Dilatancy of Media Composed of Rigid Particles in Contact, With experimental illustrations,” Phil. Mag., Vol. 20, pp. 469-481.
    [9]Reynolds, O., 1886, “Experiments Showing Dilatancy, A Property of Granular Materials Possibly Connected with Gravitation,” Proc. Roy. Inst. of Gr. Britain., Vol. 11, pp.354-363.
    [10]Herrmann, H. J., 1995, “Physics of granular media, Chaos solitons & fractals,” Vol. 6, pp. 203-212.
    [11]Herrmann, H. J., 1999, “Statistical models for granular materials,” Phys. A, Vol. 263, pp. 51-62.
    [12]Knight, J., Jaeger, H. M., and Nagel, S. R., 1993, “Vibration induced size separation in granular media: the convection connection,” Phys. Rev. Lett., Vol. 70, No. 24, pp. 3728-3731.
    [13]Suzuki, K., Hosaka, H., Yamazaki, R. and Jimbo, G., 1980, “Drying Characteristics of Particles in a Constant Drying Rate Period in Vibro-Fluidized Bed,” J. Chem. Engi., Japan, Vol. 13, pp.117-122.
    [14]Yu, S. H., Ma, B. J. and Weng, Y. Q., 1992, “Drying Performance and Heat Transfer in a Vibrated Fluidized Beds,” Drying 92, A. S. Mujumdar, ed., Elsevier Science Publishers, Amsterdam, pp. 731-740.
    [15]Pakowski, Z., Mujumdar, A. S. and Strumillo, C., 1984, “Theory and Application of Vibrated Beds and Vibrated Fluid Beds for Drying Processes,” Advances in Drying, Vol. 3, A. S. Mujumdar, ed., Hemisphere Publishing, pp. 245-306.
    [16]Jaeger, H. M. and Nagel, S. R., 1992, “Physics of the granular state,” Science, Vol. 255, pp. 1523-1531.
    [17]Faraday, M., 1831, “On a peculiar class of acoustical figures and on certain forms assumed by groups of particles upon vibrating elastic surfaces,” Fhil. Trans. R. Soc., London, Vol. 52, pp. 299-340.
    [18]Bachmann, D., 1940, Verfahrenstechnik Z.D.I. Beiheft, No. 2, p43(cited by Thomas et al., 1989)
    [19]Thomas, B., Mason, M. O., Liu, Y. A. and Squires, A. M., 1989, “Identifying States in Shallow Vibrated Beds,” Powder Tech., Vol. 57,
    pp. 267-280.
    [20]Chlenov, V. A. and Mikhailov, N. V., 1965, “Some Properties of a Vibrating Fluidized Bed,” J. of Eng. Phys., Vol. 9, pp. 137-139
    [21]Lan, Y. and Rosato, A. D., 1995, “Macroscopic Behavior of Vibrating Beds of Smooth Inelastic Spheres,” Phys. Fluids, Vol. 7, No. 8,
    pp. 1818-1831.
    [22]Brennen, C. E., Ghosh, S., and Wassgren, C. R., 1996, “Vertical Oscillation of a Bed of Granular Material,” J. of Appl. Mech., Vol. 63,
    No. 1, pp.156-161.
    [23]Jullien, R., Meakin, P. and Parlovitch, A., 1992, “Three-Dimensional Model for Particle-Size Segregation by Shaking,” Phys. Rev. Lett.,
    Vol. 69, pp. 640-643.
    [24]Jullien, R.,Meakin, P. and Pavlovitch, A., 1993a, “Jullien, Meakin, and Pavlovitch Reply,” Phys. Rev. Lett., Vol. 70, p. 2195.
    [25]Clement, E., Duran, J., and Rajchenbach, J., 1992, “Experimental Study of Heaping in a Two-Dimensional Sandpile,” Phys. Rev. Lett., Vol. 69,
    No. 8, pp.1189-1192.
    [26]Savage, S. B. and Lun, C. K., 1988, “Particle Size Segregation in Inclined Chute Flow of Dry Cohesionless Granular Solids,” J. Fluid Mech.,
    Vol. 189, pp. 311-335.
    [27]Ehrichs, E., Jaeger, H., Karczmar, G., Knight, J. B., 1995, “Granular Convection Observed by Magnetic Resonance Imagine,” Science,
    Vol. 267, No. 5, pp.1632-1634
    [28]Rosato, A. D., Lan, Y., 1995, “Macroscopic behavior of vibrating beds of smooth inelastic spheres,” Phys. Fluids., Vol. 7, No. 8, pp.1818-1831.
    [29]Douady, S., Fauve, S., and Laroche, C., 1989, “Subharmonic Instabilities and Defect in a Granular Layer under Vertical Vibrations,” Europhys. Lett., Vol. 8, No. 7, pp. 621-627.
    [30]Wassgren, C. R., 1997, “Vibration of Granular Materials,” Ph.D. Thesis, California Institute of Technology, California, USA.
    [31]Mücklich, F., Lorinser, M., Hartmann, S., Beinstingel, S., Linke, J., and Roedig, M., 1997, Be-Cu Gradient Materials through Controlled Segregation-Basic Investigations, Proc. 3rd IEA workshop on Berylium Technol. For Fusion, Oct., Mito City, Japan, Kawamura, H., Okamoto, M. (Eds.), Japan Atomic Energy Research Institute, pp.102-106.
    [32]Mücklich, F., Beinstingel, S., and Arnold, W., 1999, Investigations of Vibration Induced Particle Segregation for the Processing of FGM, Materials Science Forum, Vol. 308, pp. 25-30.
    [33]Fiscina. J., Ohligschläager, and Mücklich, F., 2003, accepted for publication by the J. Mat. Sci. Lett., JMSL-9632-03.
    [34]Fiscina, J., Jankovic, I. D. and Mücklich, F., August 2003, submitted to the J. of Appl. Phys. JR03-2568.
    [35]紀翔和,民國91年,“功能梯度材料之力學分析”, 國立台灣科技大學營建工程研究所碩士論文。
    [36]Reddy, J. N., 2000, “Analysis of functionally graded plates,” International Journal for Numerical Methods in Engineering, Vol. 47, pp. 663-684,
    [37]Ng, T. Y., Lam, K. Y., Liew K. M. and Reddy J. N., 2001, “Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading,” International Journal of Solids and Structures, Vol. 38,
    pp. 1295-1309.
    [38]Koizumi, M., 1997, “FGM activities in Japan,” Comp. PartB:Engi.,
    Vol. 28, pp.1-4.
    [39]林遠平,民國88年,“功能梯度材料圓管之熱應力分析”,私立逢甲大學機械工程研究所碩士論文。
    [40]Ennis, B. J., Green, J., and Davies, R., 1994, The legacy of neglect in the U.S., “Chemical engineering progress,” pp. 32-43.
    [41]林遠平,民國88年,“功能梯度材料圓管之熱應力分析”,私立逢甲大學機械工程研究所碩士論文。
    [42]Garcia, M. O., 2001, Untersuchungen zur vibrations-induzierten Segregation in granularen Medien, Diplomarbeit, Universität des Saarlandes, Saarbrücken.
    [43]Ohligschläger, M., Fiscina, J., Garcia Moncayo, O., and Mücklich, F., september 2001, Prägradierung von Pulvern mittels vibrationsinduzierter Segregation, Poster DFG gradient materials workshop, Darmstadt.
    [44]Fiscina, J., Ohligschläger, M., Garcia Moncayo, O., Jancovik Ilić, D., and Mücklich, F., september 2001, Struckturierte W-Cu Legierungen durch induzierte Vibration des Pulvers, Poster, DFG gradient materials workshop, Darmstadt.

    QR CODE
    :::