跳到主要內容

簡易檢索 / 詳目顯示

研究生: 爾文超
Erwin Isaac Alvarez Polanco
論文名稱: 以半自動化模式建置公開資料之三維建物模型
A Semi-automatic Approach for 3D Building Modelingfrom Free Data
指導教授: 蔡富安
Fuan Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 國際永續發展碩士在職專班
International Environment Sustainable Development Program
畢業學年度: 100
語文別: 英文
論文頁數: 82
中文關鍵詞: 矢量化物件導向分析影像形態學免費數據建築物提取紋理敷貼建物建模正規化
外文關鍵詞: building modeling, texture mapping, regularization, vectorization, object-based analysis, image morphology, free data, Buildings extraction
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數碼城市的應用在近年內越來越普及,且廣受各界的注重。然而,
    針對數據和圖資的取得管道與高額的費用,以及如何開發有效率
    的三維建物模型建製之標準作業程序,皆需去克服與改進。
    本研究所提出的演算法能利用網路上提供的完全免費的數據(包
    含衛星、航照與街景影像)來建製三維建物模型。此特性將有助
    於部份資源有限的國家或地區,在現有圖資的條件下建製出基礎
    的三維建物模型。為了達成此目標,本研究提出了一個融合各類
    影像的作業流程,主要分為兩個步驟:1.建築物辨識:藉由航遙
    測影像偵測出建物的外輪廓線;2.不同細緻成度的三維建物模型
    建造。
    第一階段包括影像增揚、分類、邊緣檢測、影像形態演
    算法、向量化與規則化;
    第二階段則由平面區塊建立出積木模型
    (BlockModel),並針對著名地標建立包括紋理敷貼的高細緻度模
    型。
    研究結果顯示所提出的方法能成功且有效的利用免費的圖資與數
    據建製三維建物模型,在測試區1224棟建築物影像當中,成功偵
    測出1150棟建築物,達到93.94%的完成度。重建的三維模型在平
    面的位置有相較合理的準確度。本研究利用開放資料及影像,開
    發出相對低成本的三維建物模型建製程序,其成果適用於都市規
    劃或防災演練等領域當中。


    In recent years, cyber cities have become very popular and useful in many applications.
    However many problems remain unaddressed, specially those related to the difficult and
    expensive acquisition of the data required to create three dimensional (3D) building models
    and the tedious and time consuming procedures to be carried out.
    The objective of this study is to propose a procedure for creating 3D building models using
    completely free data available on the internet including satellite and ground images. The
    proposed approach can be used as a framework for building spatial datasets (3D building
    models) for countries or regions with limited access to advanced commercial and other spatial
    data sources. In order to achieve this goal, a combination of different image processing
    algorithms were performed. The entire process was divided into two main parts: buildings
    detection, in which the purpose is the determination of the building outlines of the city
    through an object-based analysis, and the creation of the 3D building model in different levels
    of detail (LOD). The first phase comprises tasks of image enhancements, classification, edge
    detection, mathematical image morphology algorithms, vectorization, regularization and
    refinement. The second phase includes the building modeling from floor plans, and the
    creation of highly detailed models for a few landmark buildings, including textures mapping,
    selection, croppig, rotation and inpainting.
    The final results prove that the proposed approach is effective for creating 3D building
    models using free data. A quantitative analysis indicates that 1150 buildings out of the 1224
    buildings shown in the image were successfully extracted, achieving 93.94% of completeness.
    The reconstructed 3D building models are also accurate in terms of location. The method
    proposed in this study provides a relatively economical alternative for creating 3D city
    models from freely available images and other data. The generated models can be used for
    different applications such as city planning and location-based service.

    Chapter 1: INTRODUCTION ................................................................................................. 1 1.1 Objective and scope ........................................................................................................ 1 1.2 Study area and data sources .......................................................................................... 2 Chapter 2: LITERATURE REVIEW ..................................................................................... 5 2.1 Data acquisition .............................................................................................................. 5 2.2 Image processing, analysis and interpretation ............................................................. 5 2.3 Buildings extraction ....................................................................................................... 7 2.3.1 Shape analysis of objects in images .......................................................................... 7 2.3.2 Shadow indentification, clustering and extraction .................................................... 9 2.3.3 Candidate buildings verification and detection ....................................................... 10 2.3.4 Semiautomatic and automatic image interpretation ................................................ 11 2.4 Creating 3D building models ....................................................................................... 12 2.4.1 Level Of Detail 1 (LOD1) ....................................................................................... 14 2.4.2 Level Of Detail 3 (LOD3) ....................................................................................... 15 2.4.3 Texture mapping of 3D buildings models ............................................................... 15 Chapter 3: DATA ACQUISITION AND METHODOLOGY ........................................... 16 3.1 General description ...................................................................................................... 16 3.2 Overview and assumptions .......................................................................................... 19 3.3 Proposed approach and obstacles ............................................................................... 20 Chapter 4: RESULTS, EVALUATION AND DISCUSSIONS .......................................... 32 4.1 Image processing and analysis ..................................................................................... 32 4.1.1 Image enhancement ................................................................................................. 32 4.1.2 Image classification ................................................................................................. 34 4.1.3 Image morphology, edge detection and image cleaning ......................................... 37 4.1.4 Lines regularization ................................................................................................. 40 4.2 3D building model generation ..................................................................................... 41 4.2.1 Floor plan vectorization and refinement .................................................................. 41 4.2.2 Floor plan modeling ................................................................................................. 43 4.2.3 Creation of the 3D building model .......................................................................... 44 4.2.4 Roof Texturing ........................................................................................................ 56 4.3 Completeness analysis .................................................................................................. 58 4.3.1 Floor plans analysis ................................................................................................. 59 4.4 Placing the 3D building model in Google Earth ........................................................ 62 Chapter 5: SUMMARY AND CONCLUSIONS ................................................................. 65 BIBLIOGRAPHY ................................................................................................................... 68

    1) Benner, J., Geiger, A. and Leinemann, K., 2005. Flexible Generation of Semantic 3D
    Building Models. Gröger/Kolbe (Eds.), Proc of the 1st Intern. Workshop on Next
    Generation 3D City Models. Forschungszentrum Karlsruhe, Institut für Angewandte
    Informatik, Karlsruhe, Germany.
    2) Chen, C. H. and Pau, L. F., 1998. The Handbook of Pattern Recognition and
    Computer Vision (2nd Edition). P. S. P. Wang (eds.), pp. 207-248.
    3) Dollner, J., Buchholz, H. and Brodersen, F., 2005. Smart Buildings- a concept for adhoc
    creation and refinement of 3D building models. Groger/Kolbe (Eds.), Prod. of the
    1st Intern. Workshop on Next Generation 3D City Models, Bonn 2005, EuroSDR
    publication #49. Potsdam, Germany.
    4) Forstner, W., 1999. 3D City Models: Automatic and Semiautomatic Acquisiton
    Methods. D. Fritsch & R. Spiller, Eds., pp. 291-303, Photogrammetric week ‘99’.
    Wichmann Verlag, Heidelberg, Germany.
    5) Gökhan, H. and Aksoy, S., 2008. Automatic Detection of Geospatial Objects Using
    Multiple Hierarchical Segmentations. IEEE Transactions on Geoscience and Remote
    Sensing, vol. 46, No. 7, pp. 2097-2111.
    6) Gonzales, R. C. and Woods, R. E., 2010. Digital Image Processing, third edition.
    Pearson Education, Inc., NJ, USA.
    7) Haala N. Bohm, J. and Kada M., 2002. Processing of 3D Builiding Models for
    Location Aware Applications. IAPARS, Volume XXXIV, Germany, 2002.
    8) Haala, N. and Kada, M., 2005. Panoramic Scenes for Texture Mapping of 3D City
    Models. IAPARS, Volume XXXVI-5/W8, Berlin, 2005.
    69
    9) Huertas, A. and Nevatia, R., 1998. Detecting Buildings in Aerial Images. Computer
    Vision, Graphics, and Image Processing, Vol. 41, pp. 131-152.
    10) Irvin, R. B. and Mckeown, D. M., 1989. Methods for Exploiting the Relationship
    Between Buildings and Their Shadows in Aerial Imagery. IEEE Transactions on
    Systems. Man, And Cybernetics, Vol. 19, No. 6, pp. 1564-1575.
    11) Kada, M., Klinec, D. and Haala, N., 2005. Facade Texturing for Rendering 3D City
    Models. ASPRS 2005 Annual Conference, pp. 78-85.
    12) Ledoux, H. and Meijers, M., 2009. Extruding Building Footprints to Create
    Topologically Consistent 3D City Models. Urban and Regional Data Management -
    UDMS Annual 2009, pp. 39-48.
    13) Lee, S. C. and Nevatia, R., 2003. Interactive 3D Building Modeling Using a
    Hierarchical Representation. First IEEE International Workshop on Higher-Level
    Knowledge in 3D Modelling and Motion Analysis, pp. 58-65.
    14) Lillesand, T. M., Kiefer, R. W. and Chipman, J. W., 2008. Remote Sensing and
    Image Interpretation, sixth edition. John Wiley & Sons, Inc. United States of America.
    15) Lin, C. and Nevatia, R., 1998. Building Detection and Description from a Single
    Intensity Image. Computer Vision and Image Understanding Vol. 72, No. 2,
    November, pp. 101-121.
    16) Lin, C., Huertas, A. and Nevatia, R., 1994. Detection of Buildings Using Perceptual
    Grouping and Shadows. IEEE Computer Society Conference on Computer Vision
    and Pattern Recognition, pp. 62-69.
    17) Liow, Y. T. and Pavlidis, T., 1989. Use of Shadows for Extracting Buildings in
    Aerial Images. Computer Vision, Graphics and Image Processing, Vol. 49, pp. 242-
    277.
    70
    18) Miller, D. L. and Ziders, D., 2007. Create 3D Buildings in SketchUp and Position
    Them in ArcScene. ArcUser October-December, pp. 43-45.
    19) Neil, C. and Lynne, L., 2001. Change Detection for Linear Features in Aerial
    Photographs Using Edge-Finding. IEEE Transactions on Geoscience and Remote
    Sensing, Vol. 39, No. 7, pp. 1608-1612.
    20) Niederost, M., 2000. Reliable Reconstruction of Buildings for Digital Map Revision.
    IAPRS, Vol. XXXIII, Amsterdam, 2000.
    21) Paparoditis, N., Cord, M., Jordan, M. and Cocquerez, J., 1998. Building Detection
    and Reconstruction from Mid- and High-Resolution Aerial Imagery. Computer
    Vision and Image Understanding, Vol. 72, No. 2, November, pp. 122-142.
    22) Santos, S. S., Dionísio, M. and Rodrigues, N., 2011. Efficient Creation of 3D Models
    from Buildings Floor Plans. International Journal of Interactive Worlds, Vol. 2011,
    Article ID 897069, 30 pages.
    23) Stamos, I. and Allen, P.K., 2000. 3D Model Construction Using Range and Image
    Data. IEEE Conference on Computer Vision and Pattern Recognition, Vol. 1, pp.
    531-536.
    24) Tsai, F. and Lin, H. C., 2006. Polygon-based Texture Mapping for Cyber City 3D
    Building Models. International Journal of Geographical Information Science, Volume
    21, Issue 9, pp. 965-981.
    25) Tupin, F., Houshmand, B. and Datcu, M., 2002. Road Detection in Dense Urban
    Areas Using SAR Imagery and the Usefulness of Multiple Views. IEEE Transactions
    on Geosciences and Remote Sensing, Vol. 40, Issue 11, pp. 2405-2414.
    26) Tupin, F. and Roux, M., 2003. Detection of Building Outlines Based on the Fusion of
    SAR and Optical Features. ISPRS Journal of Photogrammetry & Remote Sensing,
    Volume 58, Issues 1-2, pp. 71-82.
    71
    27) Vosselman, G. and Digkman, S., 2001. 3D Building Model Reconstruction from
    Point Clouds and Ground Plans. International Archives of Photogrammetry and
    Remote Sensing, Volume XXXIV-3/W4 Annapolis, MD, 22-24 Oct., pp. 37-43.
    28) Wei, Y. F., Zhao, Z. M. and Song, J. H., 2004. Urban Building Extraction from Highresolution
    Satellite Panchromatic Image Using Clustering and Edge Detection. IEEE
    International Geoscience and Remote Sensing Symposium, Vol. 3, pp. 2008-2010.
    29) Zhang, Y., 1999. Optimization of Building Detection in Satellite Images by
    Combining Multispectral Classification and Texture Filtering. ISPRS Journal of
    Photogrammetry & Remote Sensing, Vol. 54, pp. 50–60.

    QR CODE
    :::