跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江采薇
Tsai-Wei Chiang
論文名稱: 融合光達及高解析影像建立三維植生覆蓋模型
Fusion of LIDAR Data and High Resolution Images for Forest Canopy Modeling
指導教授: 陳良健
Liang-Chien Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 82
中文關鍵詞: 森林模型空照影像光達
外文關鍵詞: forest model, Aerial Photo, Lidar
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建立森林模型對於森林管理及經濟發展極具重要性,而傳統建立模型方式需耗費大量人力、時間及經費,故現以光達資料及高解析影像提升效率。本研究主要目的為融合光達資料及高解析影像偵測單株立木區塊,進而建立三維植生覆蓋模型。本研究主要分為四階段,第一階段為資料前處理,將影像正射化與網格化光達資料做空間套合,第二階段進行樹林區域偵測,首先利用以區塊為單元之影像分割法將區塊分割後,再利用影像知識庫分類來進行辨識分類出樹木區域。第三階段進行單株立木萃取,利用所得到之樹木區域,以影像分水嶺技巧以及局部最大點搜尋法來萃取單株立木。第四階段利用樹高及數值地型模型等資訊進而將模型參數化得到樹模型,並建立出三維植生覆蓋模型。研究中使用兩組測試資料於台灣地區,一組測試資料於芬蘭,台灣地區之測試資料屬性分別為都市區以及果園,地點則分別位於新竹以及台中,芬蘭測區則是由國際航測及遙測學會提供之樣區資料,由研究結果顯示,由自動化萃取單株立木區塊,國內測試區之正確率約90%,高程精度則優於0.6公尺。芬蘭測區自動化萃取單株立木區塊之正確性約為80%,高程精度為1.12公尺。


    Three-dimensional forest model is important to ecosystem management. Traditional ground investigation requires vast amount of manpower, resources, costs, and time. The objective of this investigation is the modeling for 3-D forest canopy using LIDAR data and high resolution images. The proposed scheme comprises three major steps: (1) data preprocessing, (2) vegetation detection, and (3) tree crown extraction, and(4) Parameter modeling. The data preprocessing includes spatial registration of LIDAR and high resolution images, derivation of above ground surface from LIDAR data, and generation of spectral index from high resolution images. In the vegetation detection, a region-based segmentation followed by the knowledge-based classification is employed to detect tree regions. In the next step, we perform the tree crown extraction in vegetation regions. We use watershed segmentation and local maximum search to extract tree crowns. In last step, we use tree height, and terrain information to build the model. The validation data include two test sites in Taiwan and one site in Finland. Taiwan data are in Hsin-Chu and Tai-Chung respecting an urban area and orchard place, respectively. The Finland data was released by the International Society for Photogrammetry and Remote sensing (ISPRS), and Euro Spatial Data Research Organisation (EuroSDR) as a sample test site. The experimental results in Taiwan indicate that the accuracy of extracted individual tree is better than 90%. The accuracy of determined tree heights is better than 0.62m. The experimental results in Finland indicate that the accuracy of extracted individual tree is 80%. The accuracy of tree heights reaches 1.12m.

    摘要 III ABSTRACT IV 目錄 V 圖目錄 VII 表目錄 X 第一章、 前 言 1 1.1. 研究動機 1 1.2. 文獻回顧 4 1.3. 研究構想及內容 10 第二章、 研究方法 12 2.1. 資料前處理 12 2.1.1光達資料前處理 12 2.1.2空照影像前處理 18 2.2. 樹林區域偵測 19 2.2.1.區塊分割 19 2.2.2. 知識庫分類 24 2.3單株立木萃取 27 2.3.1影像分割 31 2.3.2搜尋區塊局部最大點位置 34 2.4樹林覆蓋模型建立 35 2.4.1模型參數化 35 2.4.2模型資料庫之建置 37 2.5可靠度與精度之分析 41 第三章、 實驗結果 44 3.1實驗資料 45 3.2樹林區域偵測成果 50 3.3單株立木萃取成果 59 3.4樹林覆蓋模型建立成果 60 3.5可靠度與精度之分析 67 3.5.1可靠度分析 67 3.5.1精確度分析 71 第四章、 結論與展望 77 第五章、 參考文獻 79

    1. 吳乃燊,2003,“高空飛行物體之偵測與追蹤”,碩士論文,國立中央大學資訊工程研究所,中壢,pp.11-14
    2. 林達德,2006,虛擬植物系統。民國95年5月19日,取自: http://140.112.94.11/~ttlin/shortcourse.htm
    3. 邵怡誠及陳良健,2006,空載光達點雲於DEM 自動生產與精度評估--使用ISPRS 測試資料為例,航測及遙測學刊論文,第十一卷,第一期,第1-12頁。
    4. 楊榮啟及林文亮,2003,森林測計學,國立編譯館。
    5. Abramo, J.N., 1998. Taking a stand: cultivating a new relationship with the world''s forests, ISBN:9579820880. pp.84
    6. Alharthy, A., Bethel, J., 2002,Heuristic filtering and 3d feature extraction from lidar data, International Archives of Photogrammetry and Remote Sensing, 34(3A+B):29-34
    7. Behan, A., 2000, On the matching accuracy rasterised scanning laser altimeter data, International Archives of Photogrammetry and Remote Sensing, Vol. XXXIII, Part B2 , pp. 75-82.
    8. Beucher, S. and Lantuejoul, C., 1979,Use of Watersheds in Contour Detection, International Workshop on Image proc.: Real-Time Eageand Motion Detection / Estimation, Rennes, France, September, pp.17-21
    9. Brandtberg, T. ,and Walter, F.,1998.Automated Delineation of Individual Tree Crowns in High Resolution Aerial Images by Multiple Scale analysis . Machine Vision and Applications, 11(2): 351-357
    10. Briese, C., Pfeifer, N., and Dorninger, P., 2000, Application of the Robust Interpolation for DTM Determination. IAPRS, vol. XXXIII, pp.55-61.
    11. DEFINIENS AG, 2003, eCoginition user’s guide. http://www.definiens.com. (accessed 23,Dec,2003)
    12. Dubayah, R.O. and Drake, J.B., 2000. LIDAR remote sensing for forestry. Journal of Forestry, 98: 44-46.
    13. Elmqvist, M., 2001, Ground Estimation of Laser Radar Data Using Active Shape Models, Proc. OEEPE workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models, 1 – 3 March, OEEPE Publication . 40:8. (on CD-ROM).
    14. Gong, P., Mei, X., Biging, G.S. and Zhang, Z., 2002. Improvement of an oak canopy model extracted from digital photogrammetry. Photogrammetric Engineering and Remote Sensing, 63(9): 919-924.
    15. Haala, N. and Brenner, C., 1999. Extraction of buildings and trees in urban environments, ISPRS Journal of Photogrammetry and Remote Sensing, 54:130-137.
    16. Hofmann, A.D., Mass, H., and Streilein, A., 2002, Knowledge-based building detection based on laser scanner data and topographic map information, International Archives of Photogrammetry and Remote Sensing, Vol.34, Part 3A+B, pp.163-169.
    17. Kilian, J., Haala, N., and Englich, M. 1996, Capture and Evaluation of Airborne Laser Scanner Data, Int. Arch. Of Photogrammetry and Remote Sensing, Vol.31, Part B3, Vienna, Austria, pp.383- 388.
    18. Koch, B., Hyder, U., and Weinacker, H, 2006. Detection of Individual Tree Crown in Airborne Lidar Data. Photogrammetric Engineering and Remote Sensing, 72(4): 357-363.
    19. Kraus, K. and Pfeifer, N., 1998, “Determination of Terrain Models in Wooded Areas with Airborne Laser Scanner data”, ISPRS Journal of Photogrammetry and Remote Sensing, Vol.53, pp.193-203.
    20. Lefsky, M., Cohen, W. and Spies, T. 2001. An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon. Canadian Journal of Forest Research, 31: 78–87.
    21. Lim, K., Treitz, P., Wulder, M., St-Onge, B. and Flood, M., 2003. LIDAR remote sensing of forest structure. Physical Geography, 27(1): 88-106.
    22. Mass, H-G., 1999. The potential of height texture measures for the segmentation of airborne laser scanner data, Fourth International Airborne Remote Sensing Conference and Exhibition/ 21st Canadian Symposium on Remote Sensing, June, 21-24, 1999, Ottawa, Ontario, Canada.
    23. Persson, A., J. Holmgren, and U., Soderman, 2002, Detecting and measuring Individual trees using an airborne laser scanner, Photogrametry Engineering and Remote Sensing, 68(9): 925-932.
    24. Popescu, S.C. and Wynne, R.H., 2004. Seeing the trees in the forest: using LIDAR and multispectral data fusion with local filtering and variable window size for estimating tree height, PE&RS, 70(5):589-604.
    25. Roggero, M., 2001, Airborne Laser Scanning:Clustering in Raw Data, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIV (Pt. 3/W4), pp.227– 232.
    26. Sithole, G., 2001, “Filtering of Laser Altimetry Data Using a Slope Adaptive Filter”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIV (Pt.3/W4), pp.203– 210.
    27. Song, J., Han, S., Yu, K., Kim, Y., 2002. Assessing the possibility of land-cover classification using LiDAR intensity data. ISPRS Commission III, September 9-13, 2002, Graz, Austria.
    28. St-Onge, B. and Achaichia, N., 2001. Measuring forest canopy height using a combination of LIDAR and aerial photography data, IAPRS, 34(3): 131-136.
    29. Teraoka, M., Setojmia, M. and Imai, Y., and Yasuoka, Y., 2003, Detection of Individual Tree Stands by a Fusion of a Multispectral High-resolution Image and Laser Scanning Data. Proceedings of the 24th Asian Conference on Remote Sensing, CD ROM.
    30. Teraoka, M., Endo, T., Setojima, M., Katsura,T and Yasuoka, Y., 2004, Estimation of Physical Parameters of individual Trees by Data Fusion of Aerial Images and Laser Scanning Data .Proceedings of the 25th Asian Conference on Remote Sensing, CD ROM.http://140.112.94.11/~ttlin/shortcourse.htm
    31. Wang, L. ,and Gong, P. , and Biging, G. S. ,2004.Individual Tree-Crown Delineation and Treetop Detection in High-spatial-Resolution Aerial Imagery. Photogrammetric Engineering and Remote Sensing, 70(3): 351-357
    32. Woodward, A., Acker, S. and Hoffman, R., 2002. Use of remote sensing for long-term ecological monitoring in the north coast and cascades network: summary of a workshop, http://science.nature.nps.gov/im/ monitor/docs/Woodward_2002_RS_wrkshp.pdf(accessed 20 Sept. 2004)
    33. Yamagishi, Y., Guo, T. and Yasuoka, Y., 2003, Extraction and 3D visualization of trees in urban environment. Proceedings of the 24th Asian Conference on Remote Sensing, CD ROM.
    34. Yamagishi, Y., Guo, T., Takahiro, E., and Yasuoka, Y., 2004, Modeling of 3D tree structure with Physical parameters derived from remote sensing data , Proceedings of the 25th Asian Conference on Remote Sensing, CD ROM.

    QR CODE
    :::