跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳彥良
Yeh-Liang Chen
論文名稱: 高效率雙Nd:YVO4 雷射和頻黃光產生系統
CW, intracavity orange light generation in anall-solid-state laser system using two Nd:YVO4 lasercrystals研
指導教授: 陳彥宏
Yen-Hung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 中文
論文頁數: 59
中文關鍵詞: 橘黃光
外文關鍵詞: orange, Nd:YVO4
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高功率微小化窄頻寬的黃-橘光雷射在生醫、顯示科技、天文觀
    測、光譜術等有重要的應用。我們首先設計與架設一簡易連續波輸出
    之窄頻寬593.5-nm 黃橘光雷射系統於一半導體雷射泵浦、以兩個體
    積布拉格反射器為共振腔鏡之雙波長振盪(1064 nm and 1342
    nm)Nd:YVO4 雷射內,並以非線性晶體BIBO 為腔內和頻產生
    593.5-nm 黃橘光雷射。在半導體泵浦功率為3.6W 時,有超過10mW
    的黃橘光單縱模雷射輸出,其單縱膜頻寬約15MHz。在半導體泵浦
    功率為4.2W時,有將近20mW 窄頻寬(<10 pm)之黃橘光雷射輸出,
    而這樣的頻寬仍十倍小於一般使用介電鍍膜鏡之雙波長振盪Nd3+雷
    射的頻寬。
    我們接著設計與架設一連續波高功率黃橘光雷射輸出系統。該
    系統使用一半導體雷射分光泵浦雙Nd:YVO4 雷射晶體所形成之雙波
    長振盪(1064 nm and 1342 nm)雷射並以非線性晶體BIBO 為腔內和
    頻介質產生593.5-nm 黃橘光雷射。使用此共振腔方式有著減少增益
    競爭與允許最佳化雙雷射功率輸出的優點以達到高整體轉換效率。從
    如此簡易雷射系統,吸收泵浦功率為16W 情況下,我們得到超過
    63mW 黃橘光雷射輸出,其對應的光學轉換效率為0.375%。


    Yellow-orange laser sources are in particular demand in applications
    in bio-medicine, Lidar, astronomy, and military. Single-frequency
    operation of these laser sources is of further interest in spectroscopy and
    remote-sensing applications. In this thesis, a simple scheme is first
    proposed to generate narrow spectral-width yellow-orange laser output.
    We report on the demonstration of a narrow-line, CW orange 593.5-nm
    laser achieved via intracavity sum-frequency generation (SFG) of a
    diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO4 laser
    using two volume Bragg grating (VBG) reflectors. The intracavity SFG
    process was performed in a type-I BIBO crystal. More than 10-mW
    orange 593.5-nm generation radiating at single longitudinal mode of ~15
    MHz spectral linewidth can be obtained from this compact laser system at
    diode pump power of 3.6 W. At a higher pump power of 4.2 W, the SFG
    output reached a power of ~20 mW and radiated at two longitudinal
    modes (corresponding to a spectral linewidth of <10 pm), which is still
    >10 times narrower than that observed from SFG of a conventional
    dual-wavelength Nd3+ laser system.
    We have next designed and constructed a compact continuous-wave
    orange light system by performing sum-frequency mixing in a
    diode-pumped laser system using two Nd:YVO4 laser crystals
    respectively for oscillating at the 1064 and 1342 nm and an intracavity
    BIBO SFG crystal. Such an intracavity SFG source based on two Nd3+
    laser crystals has the advantages of eliminating the gain competition
    between the two pump wavelengths and allowing for separately
    optimizing two laser powers for achieving high overall efficiency. More
    than 63-mW 593.5-nm generation can be obtained from this compact
    laser system at an absorbed pump power of ~16 W, which corresponds to
    an optical conversion efficiency of 0.375%.

    目 錄 論文摘要 ………………………………………………………………Ⅰ 誌謝……………………………………………………………………III 目錄 ……………………………………………………………………Ⅴ 圖目 ……………………………………………………………………VI 第一章 緒論 1-1 簡介……………………………………………………1 1-2 研究動機………………………………………………6 1-3 內容概要………………………………………………7 第二章 理論背景 2-1 雷射 ……………………………………………8 2-2 非線性光學簡介 ……………………………………10 第三章 實驗元件與模擬 3-1 雷射元件………………………………………………19 3-2 非線性晶體……………………………………………26 3-3 共振腔模擬……………………………………………29 第四章 實驗量測及結果分析 4-1 實驗架構與架設方法…………………………………34 4-2 結果分析 ……………………………………………45 4-3 討論…………………………………………………52 第五章 結論與未來展望 5-1 結論…………………………………………………55 5-2 未來展望……………………………………………56 參考文獻……………………………………………………………58

    [1] R. G. Wheeland, E. McBurney, and R. G. Geronemus, “The role of
    dermatologist in the evolution of laser surgery,” Dermatol Surg., vol. 26,
    pp. 815–822, 2000.
    [2] H. M. Kretschmann, F. Heine, G. Huber, and T. Halldórsson,
    “All-solid-state continuous-wave doubly resonant all-intracavity
    sum-frequency mixer,”Opt. Lett. 22, 1461-1463(1971).
    [3] Jirí Janousek, Sandra Johansson2, Peter Tidemand-Lichtenberg,
    Shunhua Wang, Jesper L. Mortensen, Preben Buchhave and Fredrik
    Laurell, “Efficient all solid-state continuous-wave yellow-orange light
    source,” Optics Express, 13, p1188-1192(2005)
    [4] Jirí Janousek, Sandra Johansson2, Peter Tidemand-Lichtenberg,
    Shunhua Wang, Jesper L. Mortensen, Preben Buchhave and Fredrik
    Laurell, “Efficient all solid-state continuous-wave yellow-orange
    [5]Foy R., Labeyrie A. : 1985, “Feasibility of adaptive telescope with
    laser probe” Astronomy and Astrophysics (ISSN 0004-6361), vol. 152,
    no. 2, p. L29 L29
    [6] R. Häring and E. Gerster, “Semiconductor Laser Systems Fills
    Yellow-Orange Gap,” EUROPhotonics, 38-39, August/September 2003.
    [7]H. M. Pask and J. A. Piper, “Efficient all-solid-state yellow laser
    source producing 1.2-W average power,”Opt. Lett. 24, 1490-1492 (1999).
    [8] C. Yung-Fu abd S. W. Tsai, “Diode-pumped Q-switched Nd:YVO4
    yellow laser with intracavity sumfrequency mixing,” Opt. Lett. 27,
    397-399 (2002).
    [9] Y. F. Chen and S. W. Tsai, “Diode-pumped Q-switched laser with
    intracavity sum frequency mixing in periodically poled KTP,” Appl. Phys.
    B. 79, 207-210 (2004).
    [10]R.W. Farley, P.D. Dao: Development of an intracavity-summed
    multiple-wavelength Nd:YAG laser for a rugged,solid-state sodium lidar
    systemAppl. Opt. 34, 4269 (1995)
    [11] Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin and B. C.
    Wong, “Efficient generation of continuous-wave yellow light by
    single-pass sum-frequency mixing of a diode-pumped Nd:YVO4
    dualwavelength laser with periodically poled lithium niobate,” Opt. Lett.
    27, 1809-1811 (2002).
    [12] S. Spiekermann, H. Karlsson, F. Laurell and I Fritag, “Tunable
    single-frequency radiation in the orange spectral region,” Electron. Lett.
    36, 543-545 (2000).
    [13]V. Lupei, , N. Pavel and T. Taira,” Highly efficient laser emission in
    concentrated Nd:YVO4 components under direct pumping into the
    emitting level,optics communications,201,431-435(2002)
    [14] P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Phys. Rev. Lett.
    7,118(1961)
    [15] R.W. Boyd, Nonlinear Optics (Academic, San Diego, CA
    1992), Chap. 1
    [16] Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped
    Nd:YVO4 laser,” Appl. Phys. B 70, 475-478 (2000)
    [17] http://www.vm-tim.de/eng/opto.htm
    [18]http://www.casix.com/product/prod_cry_ndyvo4.html
    [19]http://www.castech.com/newEbiz1/EbizPortalFG/portal/html/index.ht
    ml
    [20]Eksma optics, coating specifications, 2005
    [21]http://www.castech.com/newEbiz1/EbizPortalFG/portal/html/Product
    InfoExhibit.html?ProductInfoExhibit_ProductID=c373e90570de69548f7f
    848a8f232242&ProductInfoExhibit_isRefreshParent=false

    QR CODE
    :::