跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐仲謀
Chung-Mou Hsu
論文名稱: 以布拉格簡併應用於體積全像片光碟位置伺服之研究
Study of Position Servo for Volume Holographic Disc by Using Bragg Degeneracy
指導教授: 孫慶成
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 138
中文關鍵詞: HolographicPosition Servo
外文關鍵詞: 全像, 位置伺服
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的是將布拉格簡併現象運用在位置伺服技術。我們模擬探討在不同系統架構下對於布拉格簡併效應的影響,並提出具備最佳位移探測精準度並兼具側向位移容忍度之架構。最後用實驗驗證架構可行性,成功使用柱狀波作為參考光源,初步的實現了布拉簡併的位置探測技術。


    The main target of this thesis is to use Bragg degeneracy in position servo technology. We simulated Bragg degenerate effect under different conditions of system structure, and we proposed the optimized architecture that benefit both displacement detection accuracy and lateral displacement tolerance. Finally, experiments are applied to demonstrate the feasibility of the concept. A reference beam modulated as cylindrical wave successfully realize the the location detection technology based on Bragg degeneration.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 全像術發展 3 1.3 全像術簡介 5 1.4 體積全像光學儲存 8 1.5 同軸全像儲存 10 1.6 離軸全像儲存 11 1.7 相關理論 14 第二章 理論介紹 16 2.1 布拉格條件 16 2.2 布拉格簡併 19 2.3 球面波的布拉格簡併 21 2.4 耦合波理論 23 2.5 波恩近似 34 2.6 相位疊加法 37 第三章 體積全像中影響布拉格簡併現象分析 42 3.1 前言 42 3.2 模擬球面波的布拉格簡併 43 3.3 討論參考光和訊號光聚焦點在X方向上距離的影響 45 3.4 討論全像片厚度造成的影響 53 3.5 討論參考光聚焦深度造成的影響 61 3.6 討論訊號光聚焦深度造成的影響 69 3.7 討論干涉區域體積之寬度造成的影響 78 3.8 討論干涉區域體積之長度造成的影響 86 第四章 布拉格簡併應用於同軸全像儲存系統之位置伺服 96 4.1 同軸全像儲存系統實驗平台之建立 96 4.2 利用布拉格簡併現象之位置伺服實驗 98 4.3 利用柱面波參考光改良測向位移容忍度 102 第五章 結論 110 參考文獻 112 中英文名詞對照表 115

    參考文獻
    [1] 鄭智元、余業緯、孫慶成 (2014, 03)。〈同軸式全像資訊儲存系統之理論模型〉。科儀新知,198,頁73-84。
    [2] J. W. Goodman, Introduction to Fourier Optics, 3rd eds. (McGraw-Hill, New York, 2002).
    [3] H. Coufal, and G. W. Burr, “Optical data storage,” Chapter 26, International Trends in Applied Optics, ed., A. Guenther, SPIE, (2002).
    [4] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage, (Springer, New York, 2000).
    [5] G. W. Burr, “Holographic storage,” Encyclopedia of Optical Engineering, ed., R. B. Johnson and R. G. Driggers, Marcel Dekker, (New York, 2003).
    [6] L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. of IEEE 92, no.8, pp. 1231-1280,( Aug. 2004).
    [7] B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593-601 (1975).
    [8] A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographicthree-dimensional disks,” Appl. Opt. 35, 2389- 2398 (1996).
    [9] K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993-994 (1994).
    [10] D. Gabor, “A new Microscopic principle,” Nature 161,777(1948).
    [11] E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” Opt. Soc. Am. 52, 1123 (1962).
    [12] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2,393 (1963).
    [13] Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J.J. Levinsteinand K. Nassau, “Optical-induced refractive index inhomogeneity in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72 (1966).
    [14] F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915 (1993).
    [15] D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782 (1995).
    [16] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471 (1992).
    [17] G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403 (1996).
    [18] C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171 (1991).
    [19] C. C. Sun, R. H. Tsou, W. Chang, J. Y. Chang and M. W. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1509 (1996).
    [20] C. C. Sun, W. C. Su, Y. L. Lin, S. P. Yeh, and B. Wang, “3-dimensional random phase encryption in a volume hologram and the applications,” Proc. SPIE 4110, 139 (2000).
    [21] D. G. Volodin, “A polymeric optical pattern-recognition system for security verification,” Nature 383, 58 (1996).
    [22] F.T.S. Yu, S. Wu, A. Mayers and S. Rajan, “Wavelength multiplexed reflection matched spatial filters using LiNbO3,” Opt. Commun. 81, 343 (1991).
    [23] S. F. Chen, C. S. Wu, and C. C. Sun, “Design for a high dense wavelength division multiplexer based on volume holographic gratings,” Optical Engineering 43, 2028 (2004).
    [24] G. Barbastathis, and M. Balberg, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811 (1999).
    [25] C. C. Sun, C. Y. Hsu, C. H. Wu, and W. C. Su, “Spatial filtering of three-dimensional objects based on volume holography,” Opt. Eng.(Letters) 42, 2788 (2003).
    [26] C. C. Sun and P. P. Banerjee, “volume holographic optical elements,” Optical Engineering 43, 1957 (2004).
    [27] W. R. Klein, “Theoretical Efficiency of Bragg Devices,” Proc. IEEE 54, 803 (1966).
    [28] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
    [29] P. Yeh, Introduction to Photorefractive NonlinearOptics (Wiley, New York, 1993).
    [30] C. C. Sun, M. S. Tsaur, B. Wang, W. G. Su, and A. E. T.Chiou, “Two-Dimensional Shifting Tolerance of a Volume-Holographic Correlator,” Appl. Opt. 38, 4316 (1999).
    [31] J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM journal of research and development 44, 341 (2000).
    [32] 蔡孟芬,同軸式體積全像光碟儲存系統之研究,國立中央大學光電所碩士論文,中華民國九十五年。
    [33] A. Sinha, G. Barbastathis, W. Liu, and D. Psaltis, “Imaging using volumeholograms,” Opt.Eng. (Bellingham) 43, 1959 (2004).
    [34] L. Cao, X. Ma, Q. He, H. Long, M. Wu, and G. Jin, “Imagine spectral devicebase on multiple volume holographic gratings,” Opt.Eng. (Bellingham) 43, 2009 (2004).
    [35] F. Havermeyer, W. Liu, C. Moser, D. Psaltis, and G. J. Steckman, “Volumeholographic grating-based continuously tunable optical filter,” Opt. Eng. (Bellingham) 43, 2017 (2004).
    [36] C. C. Sun, C. Y. Hsu, W. C. Su, Y. Ouyang, and J. Y.Chang, Microwave, “ Anovel algorithm for high sensitivity in measuring surface,” Opt. Technol. Lett. 34, 319 (2002).
    [37] C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Optical Engineering (Letters) 42, 1184 (2003).
    [38] K. Curtis, L. Dhar, A. Hill, W. Wilson and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (John Wiley & Sons, New York, 2010).
    [39] M. R. Ayres, A. Hoskins, P. C. Smith and J. J. Kane, “Use of feedback error and/or feed-forward signal to adjust control axes to optimal recovery position of hologram in holographic data storage system or device”, US patent 8,446,808 B2.
    [40] C. C. Sun, T. C. Teng, Y. W .Yu “One-dimensional optical imaging with avolume holographic optical element,” Opt. Let. 30, 1132 (2005).
    [41] 鄭智元,利用相位調製改良同軸式體積全像儲存系統,國立中央大學光電科學研究所碩士論文,2008 年。
    [42] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303-1311 (1966).
    [43] D. J. Griffiths, Introduction to Electrodynamics, 3rd eds. (Prentice Hall,New Jersey, 1999).
    [44] C. C. Sun, W. C. Su, B. Wang, and Y. O. Yang, “Diffraction selectivity of holograms with random phase encoding,” Optics Communications 175, 67-74 (2000).
    [45] T. C. Teng, P. C. Ou, and C. C. Sun, “Volume holographic optical elements for point-to-point imaging with local cross talk,” Opt. Technol. Lett. 30 (2005).

    QR CODE
    :::