| 研究生: |
張煒堃 Wei-Kun Chang |
|---|---|
| 論文名稱: |
以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射 Pulsed orange, green, and red laser generations in an actively Q-switched Nd:YVO4 laser using cascaded electro-optic PPLN Q-switches |
| 指導教授: |
陳彥宏
Yen-Hung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | Q調制 、鈮酸鋰 、電光 、週期性晶格極化反轉 |
| 外文關鍵詞: | Q-switch, PPLN, EO, Nd:YVO4 |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用摻雜釹的固態雷射以腔內倍頻的方法可以有效的得到藍、綠和紅光。但
光譜在550 到650-nm 之黃橘光雷射卻相對稀少且低效率;而欲以倍頻方式產生
也因無相對之高效率紅外基頻雷射而不可得。因此利用對摻雜釹的固態雷射其兩
個重要的發射譜線4F3/2 – 4I11/2 (?~1.06 ?m) 及 4F3/2 - 4F13/2 (?~1.3 ?m)以腔內
或腔外和頻的方式產生黃橘光的雷射已成為重要的方法。黃橘光雷射源特別在生
物醫藥、光達、天文及軍事等應用上受到重視。而脈衝式黃橘光雷射更可因其高
重複率與高功率的特性而提供更廣大的應用。
本論文創新性提出以單塊串級式電光週期性晶格極化反轉鈮酸鋰
(periodically poled lithium niobate; PPLN)來分別Q-調制Nd:YVO4之1064-nm
與1342-nm 雷射譜線並同時調節該兩譜線之損益比例及Q-開關時間差以達成最
佳之雙波長脈衝及黃橘光和頻產生。此法將比傳統上使用單一Q-開關系統產生出
更高效率之脈衝黃橘光雷射源。在單塊晶體3-cm 的長度之下,當Q 調制訊號只
輸入任一Q-開關時,除了可得對應之共振雷射脈衝,還有藉由鈮酸鋰晶體非線性
性質產生非相位匹配產生的倍頻脈衝。在約五瓦特的泵浦下,1-kHz 的重複開關
頻率,可得1342-nm 最短脈寬26.96-ns 和尖峰功率14 千瓦特以及671-nm 最短
脈寬15.2-ns 和尖峰功率8.6 瓦特;抑或得到1064-nm 最短脈寬14.95-ns 和尖峰
功率18.5 千瓦特以及532-nm 最短脈寬9.26-ns 和尖峰功率20.6 瓦特。 再利用BIBO 腔內和頻晶體在雙Q-開關之Q 調制訊號延遲25-ns 時,得到和頻593-nm 最
短脈寬5.83-ns 和尖峰功率140 瓦特。
Intracavity frequency doubling in an Nd-laser system has become one
of the most efficient methods of producing blue, green, and red coherent
lights. However, no practical laser sources yet currently available in
the yellow-orange (570-620-nm) spectral region, nor applicable
fundamental infrared lasers for performing efficient frequency doubling
to the region. Sum frequency generation (SFG) of two emission lines from
transitions 4F3/2 – 4I11/2 (?1~1.06 ?m) and 4F3/2 - 4F13/2 (?2~1.3 ?m) of Nd-lasers
has become an important approach of generating coherent radiation in the
yellow-orange spectral region. Compact, high-repetition-rate pulsed
visible coherent light sources are attractive for many applications such
as bio-medicine, remote-sensing, astronomy, and military.
We achieved in a collinear three-mirror dual-wavelength Nd:YVO4 laser
system using two monolithically cascade electro-optic (EO) periodically
poled lithium niobate (PPLN) Q-switches to separately control the
Q-switching operation of the two wavelengths to optimize the temporal
overlap between them for efficient pulsed intracavity sum-frequency
generation. With this novel system, we can generate 5 high peak-power and high repetition-rate lasers radiating at Nd:YVO4 1064- and 1342-nm lines
and their non-phase-matched SHG 532- and 671-nm light and their
phase-matched SFG 593-nm light via the manipulation of the Q-switching
operations of the 3-cm bulk EO PPLN Q switches. We found a pulse build-up
delay time of ~25 ns between the two pump wavelengths is required for
achieving the best SFG efficiency in our system. When the system is
operated at a repetition rate of 1 kHz and a pump power of ~5W, we obtained
pulsed orange (593 nm), green (532 nm), and red (671 nm) generations with
peak powers of 140, 20.6, and 8.6 W, respectively.
[1.1] Schawlow, A. L.; Townes, C. H.," Infrared
and Optical Masers"Physical Review, vol. 112, Issue 6, pp.
1940-1949 (1958)
[1.2] Physics Today, pp.72 Oct. 2007
[1.3] W. H. Zachariasen,Skr. Norske Vid-Ada.,Oslo,Mat.
Naturv. No.4 (1928)
[1.4] B. T. Matthias and J. P. Remeika, “Ferroelectricity in
the illmenite structure”,Phys. Rev. 76 (1949) 1886.
[1.5] A. A. Ballman, “Growth of piezoelectric and
ferroelectric materials by the Czochralski technique”, J.
American Ceram. Soc. 48 (1965) 112.
[1.6] 胡明理, ” Zn:LiNbO3 之晶體生長與其特性研究”, 中央大
學(2004)
[1.7] Dieter H. Jundt,"Temperature-dependent Sellmeier
equation for the index of refraction, ne, in congruent
lithium niobate",Opt. Lett. Vol. 22, No. 20, 1553-1555
(1997)
[1.8] Huaijin Zhang, Xianlin Meng, Li Zhu, Changqing Wang ,
Y.T. Chow, Mengkai Lu, " Growth, spectra and infuence of
annealing efect on laser properties of Nd:YVO4 crystal",
Optical Materials 14,25-30 (2000)
[1.9] Jirí Janousek, Sandra Johansson, Peter
Tidemand-Lichtenberg, Shunhua Wang, Jesper L. Mortensen,
Preben Buchhave and Fredrik Laurell, “Efficient all
solid-state continuous-wave yellow-orange light source,”
Optics Express, 13, p1188-1192(2005)
[1.10] k.w. Su, y.t. Chang,y.f. Chen,"Power scale-up of the
diode-pumped actively Q-switched Nd:YVO4 Raman laser with
an undoped YVO4 crystal as a Raman shifter", Appl. Phys.
B 88, 47–50 (2007)
[1.11] George A. Henderson, "A computational model of a
dual-wavelength solid-state laser", J. Appl. Phys. 68(11),
5451(1990)
[1.12] http://www.ni.com/fpga/
[1.13] Amnon Yariv and Pochi Yeh, "Optical waves in crystals",
Ch. 5.3.1, 132(1984)
[1.14] J. A. ARMSTRONG, N. BLOEMBERGEN, J. DUCUING,! AND P. S.
PERSHAN, "Interactions between Light Waves in a NonlinearDielectric", Phys. Rev. Vol. 127, No. 6, 1918-1939(1962)
[1.15] D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M.
Henderson, T. K. Plant,R. R. Stephens, and C. M. Walker,
Appl. Phys. Lett. 34, 391 (1979).
[1.16] Jianhong Shi, Xianfeng Chen, Yuxing Xia, Yingli Chen,
"Electro-optical polarization controller based on solc
filter in periodically poled lithium niobate", SPIE Vol.
4905, 490-496 (2002)
[1.17] Y. H. Chen and Y. C. Huang, "Actively Q-switched Nd:YVO4
laser using an electro-optic periodically poled lithium
niobate crystal as a laser Q-switch", Opt. Lett. Vol.28,
No. 16, 1460-1462(2003)
[1.18] Y. H. Chen, Y. C. Chang, C. H. Lin, and T. Y. Chung,
"Diode-pumped, actively internal-Q-switched Nd:MgO:PPLN
laser", Opt. Exp. Vol. 16, No. 3, 2048-2055 (2008)
[1.19] Y. H. Chen, W. K. Chang, C. L. Chang, and C. H. Lin,
"Single aperiodically poled lithium niobate for
simultaneous laser Q switching and second-harmonic
generation in a 1342 nm Nd:YVO4 laser", Opt. Lett. Vol. 34,No. 11, 1711-1713(2009)
[1.20] Ben-Yuan Gu, Yan Zhang, Bi-Zhen Dong, "Investigations
of harmonic generations in aperiodic optical
superlattices", J. Appl. Phys. 87 pp. 7629-7637 (2000)
[2.1] R. Dunsmuir, Theory of Relaxation Oscillations in
Optical Masers, J. Electron Control 10,786-458(1961)
[3.1] Gregory David Miller, “Periodically poled lithium
niobate: Modeling, fabrication, and nonlinear-optical”,
Stanford university (1998)