| 研究生: |
林威廷 Wei-Ting Lin |
|---|---|
| 論文名稱: |
內藏式永磁同步馬達之電流注入線上參數估測與智慧型電流迴路控制 Current Injection Based Online Parameters Estimation for IPMSM Drive System with Intelligent Current Loop Control |
| 指導教授: | 林法正 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 線上參數估測 、d軸電流注入 、內藏式永磁同步馬達 、遞迴最小平方法 、每安培最大轉矩 、比例積分微分類神經網路 |
| 外文關鍵詞: | Online parameter estimation, d-axis current injection, Current-controlled voltage source inverter (CCVSI), interior permanent magnet synchronous motor (IPMSM), recursive least square (RLS), maximum torque per ampere (MTPA) control, proportional–integral–derivative neural network (PIDNN) |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一利用d軸電流注入線上參數估測,該方法可以於內藏式永磁同步馬達驅動系統在不同的運行條件下估測由電流控制電壓源變流器引發的失真電壓、由磁飽和現象引發的dq軸電感變化以及轉子磁通量。首先,利用dq軸電壓、電流和電源轉速的平滑值來估算電流控制電壓源變流器失真電壓和內藏式永磁同步馬達參數。此方法可以有效消除電壓、電流和轉子位置的測量誤差對估測的影響。然後,使用簡化的線性模型對電流注入其間dq軸電感的交互飽和及自飽和現象進行建模,此外,線性模型的參數式通過使用遞迴最小平方法估算出的。由於僅使用遞迴最小平方法難以獲得d軸未飽和電感,因此提出了一種新的d軸未飽和電感的調變方式,該方式為利用每安培最大轉矩理論結合遞迴最小平方法。
接著在電流迴路的解耦控制中使用估測出的dq軸電感及轉子磁通量以確保在不同的運行條件下都能正確解耦。此外,為了提高電流迴路的控制性能和頻寬,採用一比利積分微分類神經網路控制器,並採用改進的線上學習法則來取代傳統的比例積分控制器。最後,由內藏式永磁同步馬達在不同運行條件下的實驗結果,證明所提出的估算和控制策略的有效性。
An online parameter estimation method using d-axis current injection, which can estimate the distorted voltage of the current-controlled voltage source inverter (CCVSI), the varying dq-axis inductances and the rotor flux, is proposed in this study for interior permanent magnet synchronous motor (IPMSM) drives under different operating conditions. First, a d-axis current injection-based parameter estimation method considering the nonlinearity of a CCVSI is proposed. Then, a simplified linear model is employed to model the cross- and self-saturation of the dq-axis inductances during current injection. Since the d-axis unsaturated inductance is difficult to obtain by merely using the recursive least square (RLS) method, a novel tuning method for the d-axis unsaturated inductance is proposed by using the theory of the maximum torque per ampere (MTPA) with the combination of the RLS method. Moreover, the estimated dq-axis inductances and magnetic flux of the rotor are then adopted in the decoupled control of the current loops. Furthermore, to improve the bandwidth of the current loop, a proportional–integral–derivative neural network (PIDNN) controller is adopted with improved online learning algorithm to replace the traditional PI controller. Finally, the experimental results at various operating conditions of the IPMSM are given.
[1] 彭文陽,「先進馬達與驅動技術專輯」,機械工業雜誌,434期,2019年5月號
[2] P. Pillay, and R. Krishnan, “Application characteristics of permanent magnet synchronous and brushless dc motors for servo drives,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 986-996, Sep./Oct. 1991.
[3] H. Kim, J. Son, and J. Lee, “A high-speed sliding-mode observer for the sensorless speed control of a PMSM,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4069-4077, Sep. 2011.
[4] S. Kim, Y. D. Yoon, S. K. Sul, and K. Ide, “Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 488-497, Jan. 2013.
[5] F. J. Lin, Y. C. Hung, J. M. Chen, and C. M. Yeh, “Sensorless IPMSM drive system using saliency back-EMF-based intelligent torque observer with MTPA control,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1226-1241, May 2014.
[6] J. Lemmens, P. Vanassche, and J. Driesen, “PMSM drive current and voltage limiting as a constraint optimal control problem,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 2, pp. 326-338, Jun. 2014.
[7] T. Sun, J. Wang, and X. Chen, “Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036-5045, Sep. 2015.
[8] T. L. Vandoorn, F. M. D. Belie, T. J. Vyncke, J. A. Melkebeek, and P. Lataire, “Generation of multisinusoidal test signals for the identification of synchronous-machine parameters by using a voltage-source inverter,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 430–439, Jan. 2010.
[9] K. M. Rahman and S. Hiti, “Identification of machine parameters of a synchronous motor,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 557–565, Mar./Apr. 2005.
[10] G. D. Feng, C. Y. Lai, and N. C. Kar, ‘‘Novel current injection-based online parameter estimation method for PMSMs considering magnetic saturation,’’ IEEE Trans. Magn., vol. 52, no. 7, Jul. 2016.
[11] G. D. Feng, C. Y. Lai, K. Mukherjee, and N. C. Kar, ‘‘Current injection-based online parameter and VSI nonlinearity estimation for PMSM drives using current and voltage DC components,’’ IEEE Trans. Transpor. Electrifi., vol. 2, no. 2, pp. 119-128, Jun. 2016.
[12] G. L. Wang, C. Li, G. Q. Zhang, and D. G. Xu, ‘‘Self-adaptive stepsize affine projection based parameter estimation of IPMSM using square-wave current injection,’’ CES Trans. Elec. Mach. Sys., vol. 1, no. 1, pp. 48-57r. 2017.
[13] D. Q. Dang, M. S. Rafaq, H. H. Choi, and J. W. Jung, ‘‘Online parameter estimation technique for adaptive control applications of interior PM synchronous motor drives,’’ IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1438-1449, Mar. 2016
[14] S. J. Underwood and I. Husain, “Online parameter estimation and adaptive control of permanent-magnet synchronous machines,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2435–2443, Jul. 2010.
[15] M. X. Bui, M. F. Rahman, D. Guan, and D. Xiao, ‘‘A new and fast method for on-line estimation of d and q axes inductances of interior permanent magnet synchronous machines using measurements of current derivatives and inverter DC-bus voltage,’’ IEEE Trans. Ind. Electron., vol. 66, no. 10, pp. 7488-7497, Oct. 2019
[16] F. J. Lin, S. G. Chen, Y. T. Liu, and W. A. Yu, “Online autotuning of a servo drive using wavelet fuzzy neural network to search for the optimal bandwidth,” IEEE SMC Magazine, Oct., pp. 28-37, 2018.
[17] H. J. Wang, M. Yang, and D. G. Xu, ‘‘Current-loop bandwidth expansion strategy for permanent magnet synchronous motor drives,’’ Proc. 5th IEEE Conf. Ind. Elec. Appl. (ICIEA) Conf., Sep. 2010, pp. 1340-1345
[18] E. J. Fuentes, J. Rodriguez, C. Silva, S. Diaz, and D. E. Quevedo, “Speed control of a permanent magnet synchronous motor using predictive current control,” in Proc. 6th IEEE Int. Power Electron. Motion Control (PEMC) Conf., May. 2009, pp. 390–395.
[19] J. J. Ren, Y. Q. Ye, G. F. Xu, Q. S. Zhao, M. Z. Zhu, “Uncertainty-and- disturbance-estimator-based current control scheme for PMSM drives with a simple parameter tuning algorithm,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5712–5722, Jul. 2017.
[20] D. W. Chung and S. K. Sul, “Analysis and compensation of current measurement error in vector-controlled AC motor drives,” IEEE Trans. Ind. Appl., vol. 34, no. 2, pp. 340–345, Mar./Apr. 1998.
[21] K. W. Lee and S. I. Kim, “Dynamic performance improvement of a current offset error compensator in current vector-controlled SPMSM drives,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 6727–6736, Sep. 2019.
[22] F. J. Lin, Y. H. Liao, J. R. Lin, and W. T. Lin, ‘‘Interior permanent magnet synchronous motor drive system with machine learning-based maximum torque per ampere and flux-weakening control,’’ Energies., vol. 14, no. 2, Jan. 2021
[23] S. Y. Chen and F. J. Lin, “Decentralized PID neural network control for five degree-of-freedom active magnetic bearing,” Engineering Applications of AI, vol. 26, pp. 962-973, 2013.
[24] 盛暘科技股份有限公司,數位訊號處理,2007。
[25] Texas Instruments, TMS320F28075 datasheet.
[26] MCP4922 datasheet.
[27] 黃泰寅,「新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發」,中央大學電機工程系,碩士論文,民國106年6月。
[28] 周孝澤,「應用於內藏式永磁同步馬達之智慧型慣量估測及共振頻率偵測」,中央大學電機工程系,碩士論文,民國108年6月。
[29] 林俊儒,「應用於內藏式永磁同步馬達之智慧型高效能控制及小波共振頻率偵測」,中央大學電機工程系,碩士論文,民國109年7月。
[30] 陳家銘,「以單一直流鏈電流感測器結合低轉速轉矩補償之無轉軸位置感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國102年6月。
[31] K. Ahsanullah, R. Dutta, and M. F. Rahman, “Analysis of low-speed IPMMs with distributed and fractional slot concentrated windings for wind energy applications,” IEEE Trans. Magn., vol. 53, no. 11, pp. 1-10, Nov. 2017
[32] 陳航生,「內藏式永磁同步馬達之特性分析及其電動機車之應用」,中央大學電機工程系,碩士論文,民國93年5月。
[33] 劉昌煥,「交流電機控制」,東華書局,民國92年。
[34] 高子胤,「以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國100年7月。
[35] Z. Chen, M. Tomita, S. Ichikawa, S. Doki, and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimator of an extented electromotive force,” Proc. IECON 2000, pp. 1814-1819, 2000.
[36] H. W. Kim, M. J. Youn, K. Y. Cho, and H. S. Kim, ‘‘Nonlinearity estimation and compensation of PWM VSI for PMSM under resistance and flux linkage uncertainty,’’ IEEE Trans. Control Syst. Tech., vol. 14, no. 4, pp. 589-601, Jul. 2006
[37] K. Liu and Z. Q. Zhu, ‘‘Position offset-based parameter estimation for permanent magnet synchronous machines under variable speed control,’’ IEEE Trans. Power Electron., vol. 30, no. 6, pp. 3438–3446, Jun. 2015.
[38] K. D. Lee, H. W. Lee, J. Lee, and W. H. Kim, ‘‘Analysis of motor performance according to the inductance design of IPMSM,’’ IEEE Trans. Magn., vol. 51, no. 3, Mar. 2015
[39] Keysight 35670A, datasheet.
[40] S. Kim, Y. Yoon, S. Sul and K. Ide, “Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 488-497, Jan. 2013.