| 研究生: |
李建輝 Jian-Huan Lee |
|---|---|
| 論文名稱: |
2×2列聯表中雙尾檢定p-值之研究 |
| 指導教授: |
楊明宗
Ming-Chung Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 35 |
| 中文關鍵詞: | 2 × 2列聯表 、檢定 、p - 值 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Barnard, G.A. (1947),“Significance tests for 2x2 tables,”
Biometrika, 34, 123-138.
Barnard, G.A. (1949),“Statistical inference,”J.R. Statist.
Soc. B11 , 115-139
Boschloo, R.D. (1970), “Raised conditional level of
significance for the 2x2 Table when testing the equality of
two probabilities,” Statistica Neerlandica ,24(1) , 1-35.
Fisher, R.A. (1935), “The logic of inductive inferences,”J.
Roy. Statist. Soc. A, 98 , 39-54.
Garside, G.R. and C.L. Mack (1967), “Correct confidence limits
for the 2x2 homogeneity contingency table with small
frequencies,” New J. Statist. Operat. Res. ,3(2), 1-25.
Haber, M. (1986),“A modified exact test for 2x2 contingency
tables,” Biometrical J. , 28 (4), 455-463
Haber, M. (1987),“A comparison of some conditional and
unconditio- nal exact tests for 2x2 contingency tables,”
Commun. in Statist. —Simul., 16(4), 999-1013.
Martin Andres, A.(1991),“A review of classic non-asymptotic
methods for comparing two binomial proportions by means of
independent samples,”Comm. Statist. Simulation Comput.,20
(2ſ), 551-583.
Martin Andres, A., and Silva Mato (1994),“Choosing the optimal
un-conditioned test for comparing two independent
proportions,’’ Comput. Statist. Data Anal., 17, 555-574.
Martin Andres, A., and Tapia Garcia, J.M. (1999),“Optimal
unconditional test in 2x2 multinomial trials,” Comput.
Statist. Data Anal., 31, 311-321.
McDonald, L.L., B.M. Davis and G.A. Milliken (1977),“A non-
randomized unconditional test for comparing two proportions
in a 2x2 contingency table,’’ Technometrics, 19, 145-150. Suissa, S. and S.J. Shuster (1985) ,“Exact unconditional
samples size for the 2x2 binomial trial,” J. Roy. Statist.
Soc.,A 148, 317-327.
Tocher, K.D. (1950) ,“Extension of the Neyman-Pearson theory
of tests of discontinuous variables,’’ Biometrika ,37,
130-144.