跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周虹宇
Hung-yu Chou
論文名稱: 發光二極體發光光譜特性之模型建立與維持穩定
Modeling and Stabilization on Emission Spectra of Light-Emitting Diodes
指導教授: 楊宗勳
Tsung-hsun Yang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 100
語文別: 英文
論文頁數: 119
中文關鍵詞: 發光二極體,輻射光譜
外文關鍵詞: emission spectra, LEDs
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於固態光源技術不斷地演進,再加上封裝製程與螢光粉材料技術持續地發展並漸趨成熟,使得發光二極體(LED, Light emitting diode)的發光效率日漸提升,由2006年的50 lm/W提升至2009年約250 lm/W,已經具有取代甚至超越傳統光源的能力。另外,搭配發光二極體的配光曲線設計對應之二次光學元件,進而衍生出各式各樣的應用光源產品諸如車頭燈、醫療用手術燈、路燈以及腳踏車燈等等。然而,發光二極體的發光特性會隨著操作時間而改變,例如發光強度的衰減和發光顏色的飄移,原因來自於伴隨著電流驅動而在發光二極體晶片內產生的熱,因此如何評估發光二極體隨著不同電源驅動條件所伴隨的熱特性,並提出有效的熱管理解決方案,使其發光特性可以有效地被掌握,進而達到光電熱整合的目標,已經成為目前最為重要的研究課題之一。
    在本論文中,同時探討發光二極體的輻射光譜、驅動電流和接面溫度三種物理特性,而建立出光電熱整合的輻射光譜模型。此輻射光譜模型可藉由驅動電流和接面溫度,明確地掌握發光二極體的發光特性,例如光通量、色度和色溫等等。另外,本論文提出一套回授控制方法,使發光二極體有效地被維持在期望的發光狀態,而不受到熱特性的影響。
    首先,藉由積分球量測系統所量測的各色發光二極體之輻射光譜,我們建立一個適用各色發光二極體的輻射光譜模型。另一方面,我們利用順向偏壓法建立一套發光二極體接面溫度的量測系統,使接面溫度和驅動電流得以嵌入此輻射光譜模型,以建立適用各色發光二極體的光電熱整合輻射光譜模型,其可用以預測已知驅動電流和接面溫度的輻射光譜分布,進一步得知發光二極體的發光特性。
    接著,除了建立適用各色發光二極體的光電熱整合輻射光譜模型,我們進一步研究如何穩定發光二極體的發光特性。利用主動式散熱模組和適當的驅動電流,我們提出一套穩定發光二極體之發光特性的回授控制方法。由實驗結果可知,這個回授控制方法能夠有效地調控並維持發光二極體的發光特性,包括光通量、色度。


    Because of the rapid development in solid-state light technology, the luminescence efficiency of LEDs has been grown up from 50 lm/W in 2009 to 250 lm/W in 2008. LEDs have an extreme potential for future lighting. Besides, combining with the second optics component designed by the light distribution of LEDs, there are all kinds of LEDs products, such as car headlamp, light module for medical treatment, streetlight, and bike lamp etc. However, light emission properties of LEDs, for example light power and chromaticity, would be changed as the operation time goes by. The major factor caused this phenomenon is heat arisen from LEDs under electric current driving. Thus, how to effectively evaluate and manage the thermal effect to achieve an expected luminescence efficiency, is one of most important topics in LED lighting technology.
    In this dissertation, an accurate model for LEDs’ emission spectra dependent on electric driving current and junction temperature is developed. Based on this emission-spectra model, light-emission characteristics of LEDs could be clearly described under different electric driving conditions, such as light power, light chromaticity and color temperature. And, in this dissertation, an effective method for stabilization on emission spectra of LEDs is proposed. Under this controlled method, light-emission characteristics could be stabilized on a steady state, and are independent on the thermal effect.
    First we propose a model for precisely describing the emission-spectra distributions of various colored LED through an aid of the experimental data measured by an integrating sphere system. In addition, we developed a system for measuring the junction temperature of LEDs and made this junction temperature to be an influenced factor in this emission-spectra model. Thus, this emission-spectra model could be utilized to predict LED’s emission spectra under different electric driving current and junction temperature, and fit in with the practical situations.
    Furthermore, we develop a controlled method for stabilization LEDs’ emission spectra. This method is implemented by an active-controlled heat sink and a proper electric current. As results shown, this method could not only modulate, but also stabilize LEDs’ emission spectra. Thus, the light emission characteristics of LEDs could be modulated and stabilized under this method, including light power and light chromaticity of LEDs.

    Abstract Contents List of Figures VI List of Tables IX Chapter 1 Introduction 1 1.1 History of light-emitting diode 1 1.2 Challenges for LEDs 3 1.3 Motivation and Organization of Dissertation 5 Chapter 2 Electric properties of LEDs 7 2.1 Introduction 7 2.2 Forward Voltage Method 8 2.3 Electric Model for LEDs 17 2.4 Summary 40 Chapter 3 Modeling of Emission Spectra 42 3.1 Introduction 42 3.2 Spectra properties of the LEDs 50 3.3 Modeling process of the LEDs’ spectra 55 3.4 Summary 72 Chapter 4 Stabilization on Light Emission 75 4.1 Introduction 75 4.2 Concepts for light-emission stabilization 78 4.3 Implementation and results 83 4.4 Summary 91 Chapter 5 Conclusions 93 Reference 96

    [1]H. J. Round, "A note on carborundum," Electrical World, 49, 309 (1907).
    [2]M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, and G. Lasher, “Stimulated emission of radiation from GaAs p-n Junctions,” Appl. Phys. Lett. 1, 62-63 (1962).
    [3]H. Rupprecht, J. M Woodall and G. D. Pettit, “Efficient visible electroluminescence at 300K from AlGaAs pn junction grown by liquid phase epitaxy,” Appl. Phys. Lett. 11, 81-83 (1967).
    [4]H. Rupprecht, J. M Woodall and G. D. Pettit, J. W. Crowe and H. F. Quinn, ”Stimulated emission from AlGaAs diodes at 77K,” IEEE J. Quant. Electron 4, 35, (1968).
    [5]W. O. Groves, A. H. Herzog, and M. G. Craford, “The Effect of Nitrogen Doping on GaAs1-xPx Electroluminescent Diodes,” Appl. Phys. Lett. 19, 184-186, (1971).
    [6]M. G. Craford , R. W. Shaw, A. H. Herzog and W. O. Groves, “Radiative recombination mechanisms in GaAsP diodes with and without nitrogen doping,” J. Appl. Phys. 43, 4075-4083 (1972).
    [7]H. Sugawara, M. Ishikawa, Y. Kokubun, Y. Nishikawa, “Semiconductor light-emitting device,” U.S. Patent 5,048,035 (1991).
    [8]C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabel, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
    [9]K. H. Hung and T. P. Chen, “Light-emitting diode structure,” U.S. Patent 5,661,742 (1997).
    [10]R. M. Fletcher, C. Kuo, T. D. Osentowski, and V. M. Robbins, “Light-emitting diode with an electrically conductive window,” U.S. Patent 5,008,718 (1991).
    [11]S. J. Chang and C. S. Change, “650nm AlGaInP/GaInP compressively strained multi-quantum well light-emitting diodes,” Jpn. J. Appl. Phys. 37, 653-655 (1998).
    [12]S. J. Chang and C. S. Chang, “AlGaInP-GaInP compressively strained multi-quantum well light-emitting diodes for polymer fiber applications,” IEEE Photon. Technol. Lett. 10, 772-773 (1998).
    [13]S. Nakamura, N. Iwasa, and M. Senoh, “Method of manufacturing p-type compound semiconductor,” U.S. Patent 5,306,662 (1994).
    [14]S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32, 8-11 (1993)
    [15]S. Nakamura, M. Senoh, and T. Mukai, “Hight-power InGaN/GaN double-heterostructure violet light-emitting diodes,” Appl. Phys. Lett. 62, 2390-2391 (1993).
    [16]S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
    [17]E. F. Schubert, Light-emitting diodes 2nd edition, p.215 (Cambridge, New York, 2006).
    [18]W. Pohlmann, T. Vieregge, and M. Rode, “High performance LED lamps for the automobile: needs and opportunities,” Proc. SPIE 6797, 67970D (2007).
    [19]K. Kahimu, N. Yoshida, O. Shoji, E. Yanagi, Y. Fukunishi, “BackLighting Device for A Panel,” U.S. patent 5,093,765 (1992).
    [20]A. Stich, “New Light Sources for Display Backlighting,” OSRAM Opto Semiconductors, Application Note (2004).
    [21]R. M. Mach and G. O. Mueller, “White light emitting diodes for illumination,” Proc. SPIE 3938, 30-41 (2000).
    [22]W. S. Solomon, T. P. Chen, C. C. Tu, C. S. Chang, T. L. Tsai and M. C. C. Hsieh, “Multicolor white light-emitting diodes for illumination applications,” Proc. SPIE 5187, 161-170, 2004.
    [23]R. S. Kern and M. Maile, “Innovative automotive lighting with LEDs,” www.lumileds.com.
    [24]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855-857 (2004).
    [25]C. F. Lin, Z. J. Yang, J. H. Zheng, and J. J. Dai, “Enhanced light output in nitride-based light-emitting diodes by roughening the mesa sidewall,” IEEE Photon. Technol. Lett. 17, 2038-2040 (2005).
    [26]T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express 15, 6670-6676 (2007).
    [27]Y. J. Lee, H. C. Kuo, T. C. Lu, B. J. Su, and S. C. Wang, “Fabrication and Characterization of GaN-Based LEDs Grown on Chemical Wet-Etched Patterned Sapphire Substrates,” J. Electrochem. Soc. 153, 1106-1111 (2006).
    [28]S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen, and C. H. Liu, “Nitride-based LEDs fabricated on patterned sapphire substrates,” Solid-State Electron. 47, 1539-1542 (2003).
    [29]R. H. Horng, W. K. Wang, S. C. Huang, S. Y. Huang, S. H. Lin, C. F. Lin, and D. S. Wuu, “Growth and characterization of 380-nm InGaN/AlGaN LEDs grown on patterned sapphire substrates,” J. Cryst. Growth 298, 219-222 (2007).
    [30]Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17, 13747-13757 (2009).
    [31]K. T. Lee, Y. C. Lee, and J. Y. Chang, “Light Extraction Enhancement of Gallium Nitride Epilayers with Stripe Pattern Transferred from Patterned Sapphire Substrate,” J. Electrochem. Soc. 155, 638-641 (2008).
    [32]H. Ichikawa, and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,” Appl. Phys. Lett. 84, 457-459 (2004).
    [33]G. E. Hofler, C. C. Coman, M. R. Krames et al, ”High-flux high-efficiency transparent-substrate AlGalnP/GaP light-emitting diodes,” Electron. Lett. 34, 1781-1782 (1998).
    [34]B. J. Huang, C. W. Tang and M. S. Wu, “System dynamics model of high-power LED luminaire,” Appl. Therm. Eng. 29, 609-616 (2009).
    [35]M. Arik, B. Charles, S. Weaver, and J. Petroski, “Thermal management of LEDs: package to system,” Proc. of SPIE 5187, 64-75 (2004).
    [36]M. Arik, B. Charles and S. Weaver, “Chip scale thermal management of high brightness LED packages,” Proc. of SPIE 5530, 214-223 (2004).
    [37]S. Muthu, F. J. Schuurmans and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE Journal of Selected Topics in Quantum Electronics. 8, 333-338 (2002).
    [38]Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Optics Letters 34, 1-3 (2009).
    [39]W. R. Liu, C. C. Lin, Y. C. Chiu, Y. T. Yeh, S. M. Jang, and R. S. Liu, “ZnB2O4:Bi3+,Eu3+:a highly efficient, red-emitting phosphor,” Optics Express 18, 2946-2951 (2010).
    [40]Y. S. Tang, S. F. Hu, C. C. Lin, N. C. Bagkar, and R. S. Liu, “Thermally stable luminescence of KSrPO4:Eu2+ phosphor for white light UV light-emitting diodes,” Appl. Phys. Lett. 90, 151108 (2007).
    [41]S. Neeraj, N. Kijima, and A. K. Cheetham, “Novel red phosphors for solid state lighting; the system BixLn1-xVO4; Eu3+/Sm3+ (Ln = Y, Gd),” Solid State Commun. 131, 65-69 (2004).
    [42]S. C. Bera, R. V. Singh, and V. K. Garg, “Temperature behavior and compensation of light-emitting diode,” IEEE PHOTONICS TECHNOLOGY LETTERS 17, 2286-2288 (2005).
    [43]M. Bürmen, F. Pernuš, B. Likar, “Prediction of intensity and color degradation of LEDs,” Proc. SPIE 6486, 64860M (2007).
    [44]W. J. Chen, D. C. Kuo, C. W. Hung, C. C. Ke, H. T. Shen, J. C. Wang, Y. F. Wu and T. E. Nee, “The effect of junction temperature on the optoelectrical properties of green InGaN/GaN multiple quantum well light-emitting diodes,” Proc. SPIE 6468, 64680T (2007).
    [45]A. Laubsch, M. Sabathil, G. Bruederl, J. Wagner, M. Strassburg, E. Baur, H. Braun, U. T. Schwarz, A. Lell and S. Lutgen, “Measurement of the internal quantum efficiency of InGaN quantum wells,” Proc. SPIE 6486, 64860J (2007).
    [46]C. J. Youn, T. S. Jeong, M. S. Han, J. W. Yang, K. Y. Lim and H. W. Yu, “Influence of various activation temperatures on the optical degradation of Mg doped InGaN/GaN MQW blue LEDs,” Journal of Crystal Growth 250, 331-338 (2003).
    [47]Y. Xi, J. Q. Xi, T. Gessmann, J. M. Shah, , J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, “Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods,” Appl. Phys. Lett. 86, 031907 (2005).
    [48]Y. Xi, E. F. Schubert, “Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. 85, 2163-2165 (2004).
    [49]S. Chhajed, Y. Xi, T. Gessmann, J. Q. Xi, J. M. Shah, J. K. Kim and E. F. Schubert, “Junction temperature in light-emitting diodes assessed by different methods,” Proc. SPIE 5739, 16-24 (2005).
    [50]C. C. Lee and J. Park, “Temperature measurement of visible light-emitting diodes using nematic liquid crystal thermography with laser illumination,” IEEE Photonics Technology Letters, 16, 1706-1708 (2004).
    [51]J. Park, M. Shin and C. C. Lee, “Measurement of temperature profiles on visible light-emitting diodes by use of a nematic liquid crystal and an infrared laser,” Opt.Lett. 29, 2656-2658 (2004).
    [52]W. J. Hwang, T. H. Lee, L.Kim and M. W. Shin, “Determination of junction temperature and thermal resistance in the GaN-based LEDs using direct temperature measurement,” physica status solidi(c) 1, 2429-2432 (2004).
    [53]J. Cho, C. Sone, Y. Park and E.Yoon, “Measuring the Junction Temperature of III-Nitride Light-Emitting Diodes Using Electro-Luminescence Shift,” Physica Status Solidi (a) 9, 1869-1873 (2005).
    [54]Y. Gu and N. Narendran, “A noncontact method for determining junction temperature of phosphor- converted white LEDs,” Proc. SPIE 5187, 107-114 (2003).
    [55]E. S. Yang, Fundamentals of semiconductor devices, p.104 (McGraw-Hill, 1978).
    [56]S. W. Lee, D. C. Oh, H. Goto et .al, “Origin of forward leakage current in GaN-Based light-emitting devices,” App. Phys. Lett. 89, 132117 (2006).
    [57]J. A. Ellis and P. A. Barnes, “Current-voltage characteristics of a GaAs Schottky diode accounting for leakage paths,” App. Phys. Lett. 76, 124-125 (2000).
    [58]H. Kim, S. J. Park and H. Hwang“Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs,” Appl. Phys. Lett. 81, 1326-1328 (2002).
    [59]H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park and H. Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett. 77, 1903-1904 (2000).
    [60]Y. B. Acharya and P. D. Vyavahare, “Remodeling Light Emitting Diode in Low Current Region,” IEEE TRANSACTIONS ON ELECTRON DEVICES 45, 1426-1430 (1998).
    [61]J. Park and C. C. Lee, “An electrical model with junction temperature for light-emitting diodes and the impact on conversion efficiency,” IEEE Electron Device Letters 26, 308-310 (2005).
    [62]E. F. Schubert, Light-emitting diodes 2nd edition, p.64 (Cambridge, New York, 2006).
    [63]T. L. Paoli, “Optoelectronic saturation behavior of a p-n junction,” IEEE Journal of Quantum Electronics 16, 340-346 (1980).
    [64]S. Hwang, J. Yoon, J. Shim and K. Yoo, “Effect of electrode pattern on light emission distribution in InGaN/GaN light emitting diode,” Physica Status Solidi (c) 5, 2179-2182 (2008).
    [65]Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, “Enhancement of (In,Ga)N light-emitting diode Performance by laser liftoff and transfer from sapphire to silicon,” IEEE Photonics Technology Letters 14, 1400-1402 (2002).
    [66]D. K. Schroder, Semiconductor Material and Device Characterization 2nd edition (Wiley, New York, 1998).
    [67]H. Kim, D. J. Kim, S. J. Park, and H. Hwang, “Effect of an oxidized Ni/Au p contact on the performance of GaN/InGaN multiple quantum well light-emitting diodes,” Journal of Applied Physics 89, 1506-1508 (2001).
    [68]L. Zhou, W. Lanford, A. T. Ping, I. Adesida, J. W. Yang, and A. Khan, “Low resistance Ti/Pt/Au ohmic contacts to p-type GaN,” Appl. Phys. Lett. 76, 3451-3453 (2000).
    [69]X. Guo, E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates,” J. Appl. Phys. 90, 4191-4195 (2001).
    [70]A. O. Conde, Y. Ma, J. Thomson, E. Santos, J. J. Liou, F. J. García Sánchez, M. Lei, J. Finol, and P. Layman, “Direct extraction of semiconductor device parameters using lateral optimization method,” Solid State Electronics 43, 845-848 (1999).
    [71]J. Park and C. C. Lee, “An electrical model with junction temperature for light-emitting diodes and the impact on conversion efficiency,” IEEE Electron Device Letters 26, 308-310 (2005).
    [72]S. Hwang, J. Yoon, J. Shim, and K. Yoo, “Effect of electrode pattern on light emission distribution in InGaN/GaN light emitting diode,” Phys. Stat. Sol. 5, 2179-2182 (2008).
    [73]X. A. Cao, E. B. Stokes, P. Sandvik, N. Taskar, J. Kretchmer, and D. Walker, “Optimization of current spreading metal layer for GaN/InGaN-based light emitting diodes,” Solid-State Electronics 46, 1235-1239 (2002).
    [74]X. A. Cao, J. M. Teetsov, M. P. D’Evelyn, D. W. Merfeld, and C. H. Yan, “Electrical characteristics of InGaN∕ GaN light-emitting diodes grown on GaN and sapphire substrates,” Appl. Phys. Lett. 85, 7-9 (2004).
    [75]L. Hirsch and A. S. Barriere, “Electrical characterization of InGaN/GaN light emitting diodes grown by molecular beam epitaxy,” J.Appl.Phys. 94, 5014-5020 (2003).
    [76]Y. Uchida, T. Taguchi, ”Lighting theory and luminous characteristics of white light-emitting diodes,” Optical Engineering 44, 124003 (2005).
    [77]G. Wyszecki and W. S. Stiles, Color science: concepts and methods, quantitative data and formulae 2nd edition, (John Wiley & Sons, New York, 1982).
    [78]M. C. Stone, “Representing Colors as Three Numbers,” IEEE Computer Graphics and Applications 25, 78-85 (2005).
    [79]G. B. Angel, F. B. A. Antonio, V. M. Daniel and E. Bernabeu, “Thermal influences on optical properties of light-emitting diodes: a semiempirical model,” Appl. Opt. 40, 533-537 (2001).
    [80]S. Chhajed, Y. Xi, T. Gessmann, J. Q. Xi, J. M. Shah, J. K. Kim, and E. F. Schubert, “Junction temperature in light-emitting diodes assessed by different methods,” Proc. SPIE 5739, 16-24 (2005).
    [81]S. Chhajed, Y. Xi, T. Gessmann, Y. L. Li and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. 97, 054506 (2005).
    [82]C. F. Jones, “Colorimetry, chromaticity space and LEDs,” Proc. SPIE 3428, 100-114 (1998).
    [83]K. Man, I. Ashdown, “Accurate colorimetric feedback for RGB LED clusters,” Proc. SPIE 6337, 633702 (2006).
    [84]W. Mandl, R. Ennulat, C. Terrill, K. W. Goossen, “A LWIR focal plane with digital readout demonstrating a passive free space optical readout link,” Proc. SPIE 3698, 736-747 (1999).
    [85]A. Monakhov, A. Krier and V. V. Sherstnev, “The effect of current crowding on the electroluminescence of InAs mid-infrared light emitting diodes,” Semiconductor Science and Technology. 19, 480–484 (2004).
    [86]Y. Ohno, “Color rendering and luminous efficacy of white LED spectra,” Proc. SPIE 5530, 88-98 (2004).
    [87]G. Y. Zhao, G. Yu, T. Egawa, J. Watanabe, T. Jimbo, M. Umeno, “Energy-gap narrowing in a current injected InGaN/AlGaN surface light emitting diode,” Appl. Phys. Lett. 71, 2424-2426 (1997).
    [88]F. J. G. Sánchez, A. Ortiz-Conde, J. J. Liou, “Calculating double-exponential diode model parameters from previously extracted single-exponential model parameters,” Electron. Lett. 31, 71-72 (1995).
    [89]K. G. Zolina, V. E. Kudryashov, A. N. Turkin, A. E. Yunovich, S. Nakamura, “Luminescence spectra of superbright blue and green InGaN/AlGaN/GaN light-emitting diodes,” Internet Journal of Nitride Semiconductor Research 1, 11 (1996).
    [90]I. Fryc, S. W. Brown and Y. Ohno, “Spectral matching with an LED-based spectrally tunable light source,” Proc. SPIE 5941, 59411I (2005).
    [91]Ho, C.H., “A practical and inexpensive design for measuring the radiation patterns and luminescent spectra of optoelectronic devices,” Review of Scientific Instruments 72, 3103-3107 (2001).
    [92]F. Reifegerste, J. Lienig, “Modelling of the temperature and current dependence of LED spectra,” Journal of Light & Visual Environment 32, 288-294 (2008).
    [93]W. R. McCluney, Introduction to radiometry and photometry (Artech House, Inc., 1994).
    [94]www.midnightkite.com/color.html
    [95]S. K. Kim, H. K. Cho, K. K. Park, J. Jang, J. S. Lee, K. W. Park, Y. Park, J. Y. Kim and Y. H. Lee, “Angle-tuned, evanescently-decoupled reflector for high-efficiency red light-emitting diode,” Optics Express 16, 6026-6036 (2008).
    [96]A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Yu. T. Rebane, D. V. Tarkhin and Yu. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs,” Semiconductors 40, 605-610 (2006).
    [97]S. M. Sze and K. K. Ng, Physics of Semiconductor Devices 3rd edition, p.606 (John Wiley & Sons, Inc., 2007).
    [98]E. F. Schubert, Light-emitting diodes 2nd edition, p.88 (Cambridge, New York, 2006).
    [99]H. Y. Chou and T. H. Yang, “Dependence of emission spectra of LEDs upon junction temperature and driving current”, Journal of Light & Visual Environment 32, 183-186 (2008).
    [100]S. Muthu, F. J. Schuurmans and M. D. Pashley., “Red, green, and blue LEDs for white light illumination,” IEEE Journal of Selected Topics in Quantum Electronics. 8, 333-338 (2002).
    [101]Y. Garrett, “Intelligent drive circuit for a light emitting diode (LED) light engine,” Patent No. US 7, 132, 805 B2 (2006).
    [102]J. Y. Garrett, “Dynamic color mixing LED device,” Patent No. US 7,119,500 B2 (2006).
    [103]S. Maniam, P. B. Yoke, C. K. Hooi, “Light source having more than three LEDs in which the color point are maintained using a three channel color sensor,” Patent No. US 7,315,139 B1 (2008).

    QR CODE
    :::