跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳岳毅
Yueh-Yi Chen
論文名稱: 以砷化鎵為基材在1060nm波段側向接面超螢光白光二極體
GaAs-based transverse current injection light emitting diodes at the wavelength 1060nm
指導教授: 許晉瑋
Jin-Wei Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 47
中文關鍵詞: 側向接面超螢光發光二極體砷化鎵
外文關鍵詞: superluminescent diode, GaAs, transverse junction
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文裡,我們比較了側向p-n接面與一般垂直p-n接面元件之特性,一般的垂直接面發光二極體,在多重量子井中會有載子分佈不均勻的問題,可藉由側向接面元件消除,側向接面元件展現了穩定且平坦的光譜頻寬,在大偏壓電流操作下,3-dB頻寬為165nm,中心波長在1060nm附近,其3-dB頻寬對擴散深度及加入的偏壓電流不敏感,且頻寬有飽和之現象,此說明載子均勻分佈之重要性。


    In this thesis, we compared performance of our demonstrated transverse p-n junction devices to those traditional vertical ones. The nonuniform carrier distribution problem that occurs in the multiple quantum wells (MQWs) of traditional vertical p-n junction LEDs can be totally eliminated by introducing a transverse p-n junction with MQWs combining with different emission wavelengths. These devices exhibit stable, flattened, and invariant broadband optical spectrum with maximum 3-dB bandwidth of 165nm around the wavelength of 1.06μm under a large bias current operation. The bandwidths of devices are not sensitive to diffusion depth and bias currents, revealing the improvement of uniform distribution of carriers.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 v 表目錄 vii 第一章 簡介 1 1-1 光學同調斷層攝影(Optical Coherence Tomography,OCT) 3 1-2 光學同調斷層攝影光源波長 5 第二章 理論 7 2-1 超螢光二極體基本考量 8 2-2 使用側向接面之目的 11 2-3 量子井設計 15 第三章 元件製程 18 第四章 量測結果與分析 25 4-1 不同擴散時間的發光二極體特性 26 4-2 側向接面雷射 31 第五章 結論 35 參考文獻 36

    [1] Brett E. Bouma, Guillermo J. Tearney, Handbook of Optical Coherence Tomography, Marcel Dekker, INC.
    [2] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser,” Optical coherence tomography – principles and applications”, Rep. Prog. Phys., Vol. 66, pp. 239-303, 2003
    [3] D.Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, Vol. 254, pp.1178-1181, 1991.
    [4] A. F. Fercher, E. Roth, “Ophthalmic laser interferometry,” Proceedings of SPIE, Vol. 658, pp. 48-51, 1986
    [5] Carmen Puliafitomet al., Optical Coherence Tomography of Ocular Diseases, Slack Inc,1996
    [6] Grrreats WS , “Ocular spectral characteristics as related to hazards from laser and other light sources”. Am J Ophthalmol, vol. 66 ,pp. 15-20, 1968
    [7] Yimin Wang, J. Stuart Nelson, Zhongping Chen, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express, vol. 11 , pp.1411-1417,2003
    [8] R. C. Yougquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectomerty : a new optical evaluation technique,” Opt. Lett., vol. 12, pp. 158-160, 1987
    [9] W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto,” In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett., Vol. 24, pp.1221-1223, 1999
    [10] J. K. Ranka, R. S. Windeler, amd A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm”, Opt. Lett. Vol. 25, pp. 25-27, 2000
    [11] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, and J. G. Fujimoto, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett., Vol. 26, pp. 608-610, 2001
    [12] J. M. Schmitt, S. L. Lee, and K. M. Yang, “Optical coherence microscope with enhanced resolving power in thick tissue”, Optics Communications., Vol. 142, pp. 203-207, 1997
    [13] Carla C. Rosa, Vladimir Shidlovski, John A. Rogers, Richard B. Rosen , and Adrian Gh. Podoleanu, “Broadband SLD based source for retina investigations”, Proceedings of SPIE, Vol. 5690,pp. 540-547, 2005
    [14] Vladimir Shidlovski, Jay Wei,”Superluminescent Diodes for Optical Coherence Tomography,” Proceedings of SPIE, Vol. 4648 , pp. 139-147, 2002
    [15] C. F. Lin and B. L. Lee,”Extremely broadband AlGaAs/GaAs superluminescent diodes,” Appl. Phys. Lett., Vol. 71, pp.1598-1600, 1997
    [16] C. E. Dimas, H. S. Djie and B. S. Ooi, “Superluminescent diodes using quantum dots superlattice”, J. Cryst. Growth, Vol. 288, pp.153-156, 2006
    [17] H. S. Djie, C. E. Dimas, and B. S. Ooi, “Wideband quantum-dash-in-well superluminescent diode at 1.6um,” IEEE Photon. Technol. Lett., Vol. 18,pp. 1747-1749,2006
    [18] M. L. Osowski, T. M. Cockerill, R. M. Lammert, D. V. Forbes, D. E. Ackley, and J. J. Coleman, “A strained layer InGaAs-GaAs-AlGaAs single quantum well broad spectrum LED by slective-area metalorganic chemical vapour deposition,” IEEE Photon Technol. Lett., Vol. 6, pp. 1289-1291, 1994
    [19] B. S. Ooi, K. Mcllvaney, M. W. street, A. Helmy, S. G. Ayling, A. C. bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum well intermixing in GaAs/AlGaAs structure using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. , Vol. 33, pp. 1784-1793, 1997
    [20] A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsku, M. V. Shramenko, and S. D. Yakubovich,” (GaAl)As SQW superluminescent diodes with extremely coherence length,” Electron. Lett., Vol. 33, pp.315, 1995
    [21] A. T. Semenov, L. A. Rivlin, S. D. Yakubovich, “Dynamics and spectra of semiconductor lasers”, J. Sov. Laser Research, Vol. 7, N 2, pp.57-206,1986
    [22] N. S. K. kwong, K. Y. Lau, N. Bar-Chaim ,”High-power, high-efficiency GaAlAs superluminescent diode with integral absorber for lasing suppression.”, IEEE J. Quantum Electron.,QE-25,N 3,pp. 696-704, 1989
    [23] B. D. Paterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg.,” A Superluminescent diodes at 1.3μm with very low spectral modulation.”, IEEE J. Quantum Electron., QE-30, N 3, pp.703-712, 1994
    [24] A. T. Semenov, V. R. Shidlovski, S. A. Safin. , “Wide-spectrum SQW superluminescent diodes at 0.8μm with bent optical waveguide.”, Electron. Letts.,Vol. 29, N 10, pp.854-856, 1993
    [25] T. Tokayama, O. Imafuji, Y. Koichi et al. , “100mW High-powe angle-stripe superluminescent diodes with new real refractive-index-guided self-aligned structure.”, IEEE Journal of Quantum Electron.,QE-32, N 11, pp. 1981-1987, 1996
    [26] H. Yamazaki, A. Tomita, M. Yamaguchi, and Y. Sasaki, “Evidence of nonuniform carrier distribution in multiple quantum well lasers,” Appl. Phys. Lett., vol. 71, pp. 767–769, 1997.
    [27] B.-L. Lee, C.-F. Lin, L.-W. Laih, andW. Lin , “Experimental evidence of nonuniform carrier distribution in multiple-quantum-well laser diodes,” Electron. Lett., vol. 34, pp. 1230–1231, 1998.
    [28] C.-F. Lin, B.-R. Wu, L.-W. Laih, and T.-T. Shih, “Sequence influence of nonidentical InGaAsP quantum wells on broadband characteristics of semiconductor optical amplifiers/superluminescent diodes,” Opt. Lett., vol. 26, pp. 1099–1101, 2001.
    [29] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, D. A. Thompson, and M. Davies, “Effect of barrier height on the uneven carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers,” IEEE Photon. Technol. Lett., vol. 10, pp. 1380–1382, Oct. 1998.
    [30] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, and D. A.Thompson, “Effect of barrier thickness on the carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers,” IEEE Photon. Technol. Lett., vol. 12, pp. 134–136, Feb. 2000.
    [31] C.-F. Lin, Y.-S. Su, C.-H. Wu, and G. S. Shmavonyan, “Influence of separate confinement heterostructure on emission bandwidth of InGaAsP superluminescent diodes/semiconductor optical amplifiers with nonidentical multiple quantum wells,” IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1441–1443, Jun. 2004.
    [32] Y. J. Yang, Y. C. Lo, G. S. Lee, K. Y. Hsieh, and R. M. Kolbas, “Transverse junction stripe laser with a lateral heterobarrier by diffusion enhanced alloy disordering,” Appl. Phys. Lett., vol. 49, pp. 835–837, Oct.1986.
    [33] J. W. Shi, T. J. Hung, Y. Y. Chen. Y. S. Wu, Wei Lin, Ying Jay Yang, “InP-Based Transverse Junction Light-Emitting Diodes for White-Light Generation at Infrared Wavelengths,” IEEE Photon. Technol. Lett. Vol. 18, No. 19, 2006

    QR CODE
    :::