跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張振耀
Chen-Yao Chang
論文名稱: Stretching effect on the spin transport properties of single molecular junctions: A first-principle study
指導教授: 唐毓慧
Yu-Hui Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 49
中文關鍵詞: 分子通道磁性自旋電子學
外文關鍵詞: single molecular junction, first principle, spintronic
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著自旋電子學的蓬勃發展,對於「分子通道的傳導特性」的量測也有新的構想,像是將原本接在分子通道兩側的金屬電極換成具有磁性的金屬 (磁性電極/單分子/磁性電極),以移動STM探針來達到拉扯分子的效果,使分子通道隨著拉扯過程逐漸斷裂成「單分子通道」。
    在理論模擬的部分,我們選用的單分子通道為BDT(硫-C_6 H_6-硫)與ADT(硫-C_3 H_6-硫)兩種,並將其接在鈷電極(111)中間。為了模擬真實的實驗狀況,我們緩緩的增加右側電極與分子的距離,使其具有類似STM探針拉扯的效果,然後計算系統的能量直到收斂,重複上述循環直至分子通道斷裂。我們發現以π-鍵為主的C_6 H_6 與 以σ-鍵為主的C_3 H_6,在分子被拉伸的過程中,分子會影響其附近的原子並產生截然不同的結果。我們也藉由改變左側電極的磁矩方向,使系統成為平行(↑↑/單分子/↑↑)與反平行(↓↓/單分子/↑↑)的狀況,我們發現由於中間通道的差異,會影響自旋的注入,更值得注意的是C_6 H_6在平行與反平行的兩種情況下,電導會有巨大的差異,並產生顯著的磁阻。


    The manipulation of spin transport properties in FM/single molecule/FM junctions has attracted intensive attentions due to their potential applications in molecular spin electronics, where FM denotes the ferromagnetic materials. In this study, we employ the first-principles calculation with the Keldysh Green’s function method [8] to calculate the spin transport properties of the σ-saturated Co/Alkanedithiols(ADT)/Co and the π-saturated Co/Benzenedithiol(BDT)/Co single molecular junctions. In order to simulate the single molecular magnetic junction in realistic experimental system [5], we stretch the junction by increasing the distance between two Co electrodes in small steps, optimize again, and continued to do so, until the junction is broken down. The calculated total energy, bond lengths, and bond angles conclude that the central molecule indeed plays an important role on the stretching process and the breakdown situation. Once we obtain the relaxed junction geometry under stretching process, we employ the DFT+NEGF+LDA calculation to calculate the spin-polarized transmission spectra and PDOS’s for both PC and APC situations. For both junctions, the dramatic variation from the highly spin-polarized transmission in PC to the non-spin-polarized transmission in APC indicates the possibility for the high MR value under bias. However, the more conductive BDT molecule enhances the spin transport probabilities near EF may be a promising candidate for the molecular spintronics application.

    Chapter1 Introduction 1 Chapter2 Density Functional theory 4 2.1 Overview 4 2.1.1 Hartree-Fock approximation 5 2.1.2 Hohenberg-Kohn theorem 6 2.1.3 Kohn-Sham equation 7 2.1.4 Local Density Approximation 9 2.1.5 Generalized gradient approximations 9 2.1.6 Pseudopotentials 9 2.2 Non-Equilibrium Green’s function method 10 2.2.1 Self-Consistent in NEGF-DFT calculation 10 2.2.2 Transmission 12 2.2.3 Density of states 12 Chapter3 Computational Details 14 Chapter4 Discussions 16 4.1 Structural Relaxation during Stretching 16 4.2 Spin Transport Properties in Parallel Configuration 23 4.3 Spin Transport Properties in Anti-parallel Configuration 29 Chapter5 Summary 34  

    [1] M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J.M. Tour. Conductance of molecular junction. Science 278, 252-254 (1997)
    [2] M. Di Ventra, S. T. Pantelides, and N. D. Lang. First Principle Calculation of Transport Properties of a Molecule Device. Phys. Rev. Lett. 84,979 (2000)
    [3] B. Xu, and N. J. Tao. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science 301, 1221 (2003)
    [4] X. Xiao, B. Xu, and N. J. Tao. Measurement of Single Molecule Conductance: Benzenedithiol and Benzenedimethanethiol. Nano Lett. 4, 267 (2004)
    [5] B. Q. Xu, X. L. Li, X. Y. Xiao, H. Sakaguchi, and N. J. Tao. Electromechanical and Conductance Swiching Properties of Single Oligothiophene Molecules. Nano let. 5, 1491-1495 (2005)
    [6] S. M. Lindsay, and M. A. Ratner. Molecular Transport Junctions: Clearing Mists. Adv. Mater. 19, 23-31 (2007)
    [7] N. J. Tao. Electron transport in molecular junctions. Nature Nanotech. 1, 173-181 (2006)
    [8] Y.-H. Tang, V. M. K. Bagci, J. –H. Chen, and C. C. Kaun. Conductance of stretching Oligothiophene Single-Molecule Junctions: A First-Principle Study. J. Phys. Chem. C. 115, 25105-25108 (2011)
    [9] S. Mandal, and R. Pati. What Determines the Single Reversal of Magnetoresistance in a Molecular Tunnel Junction? ACS Nano. 6, 3580 (2012)
    [10] E. G. Emberly, and G. Kirczenow. Molecular spintronics: spin-dependent electron transport in molecular wires. Chemical Physics 281, 311-324 (2002)
    [11] A.. R. Rocha, V. M. Garcia-Suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito. Towards molecular spintronics. Nature Mater. 4, 335-339 (2005)
    [12] D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo. Nonlinear Spin Current and Magnetoresistance of Molecular Tunnel Junctions. Phys. Rev. Lett. 96, 166804 (2006)
    [13] Z. Ning, Y. Zhu, J. Wang, and H. Guo. Quantitative Analysis of Nonequilibrium Spin Injection into Molecular Tunnel Junctions. Phys. Rev. Lett. 100, 056803 (2008)
    [14] I. Zutic, J. Fabian, and S. Das Sarma. Spintronics: Fundamentals and applications. Review of Modern Physics. 76 (2004)
    [15] S. Sanvito. Molecular spintronics: The rise of spinterface science Nature Physics 6, 562-564 (2010)
    [16] S.Sanvito, C. J. Lambert, J. H. Jefferson, and A. M. Bratkovsky. General Green’s-function formalism for transport calculations with s p d Hamiltonians
    and giant magnetoresistance in Co- and Ni-based magnetic multilayers. Phys. Rev. B. 59, 11 936 (1999)
    [17] J. Taylor, H. Guo, and J. Wang. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B. 63, 245407 (2001)
    [18] A. P. Jauho, N. S. Wingreen, and Y. Meir. Time-dependent transport in interacting and noninteracting resonant-tunneling system. Phys. Rev. B. 50, 5528 (1994)
    [19] S. Datta. Electronic Transport in Mesoscopic Systems. Cambridge University Press, New York. (1995)
    [20] B. Wang, J. Wang, and H. Guo. Current Partition: A Nonequilibrium Green’s Function Approach. Phys. Rev. Lett. 82, 398 (1999)
    [21] N. W. Ashcroft. N. D. Mermin. Solid State Physics. New York. (1976)
    [22] P. Hohenberg, and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. 136, B864 (1964)
    [23] J. C. Slater. A Simplification of the Hartree-Fock Method. Phys. Rev. 81, 385 (1951)
    [24] P. Giannozzi. Numerical Methods in Quantum Mechanics. Unuversity of Udine (2014)
    [25] P. Hohenberg and W. Kohn. Inhomogeneous Eletron Gas. Phys. Rev. 136, B864 (1964)
    [26] W. Kohn, and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1133. (1965)
    [27] http://www.quantum-espresso.org/
    [28] http://quantumwise.com/

    QR CODE
    :::