跳到主要內容

簡易檢索 / 詳目顯示

研究生: 涂麗玉
Li-Yu Tu
論文名稱: 利用模糊最近特徵線轉換做人臉辨識
Face Recognition Using Fuzzy Nearest
指導教授: 陳映濃
Ying-Nong Chen
范國清
Kuo-Chin Fan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 40
中文關鍵詞: 最近特徵線模糊理論
外文關鍵詞: NFLE, Fuzzy
相關次數: 點閱:27下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近特徵線轉換 (Nearest Feature Line Embedding, NFLE),是以
    最近特徵線方法作為共變異數矩陣計算的空間轉換方式,在先前的研
    究中,NFLE 已在實驗中顯示出它在人臉辨識上有不錯的效果,然而
    在進行特徵線的分類計算時,大多採用歐氏距離,但歐氏距離對於每
    個樣本在相同基準下進行計算,無法真實呈現出樣本的重要程度之
    分。因此在本研究中,我們提出了 Fuzzy NFLE,利用加權式歐式距
    離,將樣本依距離給予權重,距離近的樣本權重較大,距離遠的樣本
    權重較小,如此可以模糊化樣本的類別資訊,使類別資訊能夠充份地
    被利用,因此可以增加轉換空間的區別能力,我們以人臉辨識進行實
    驗,實驗結果顯示 Fuzzy NFLE 辨識率可優於 NFLE。


    Nearest Feature Line Embedding (NFLE) is a feature space transformation algorithm whose covariance matrix is obtained based on Nearest Feature Line. In previous studies, NFLE has successfully demonstrated its capability in face recognition However, the contribution of each training sample cannot be precisely extracted because NFLE is obtained based on Euclidean distance. To remedy this problem, fuzzy NFLE is introduced in this thesis. In our work, Fuzzy NFLE uses distance to evaluate each sample by assigning greater weight to closer sample in order to fully utilize the discriminative information of each sample with an eye to increasing feature space transfer capability. Experimental results demonstrate that the face recognition rate of Fuzzy NFLE performs better than NFLE.

    目 錄 頁次 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 謝誌 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 一、 緒論 . . . . . . . . . . . . . . . . . . . . . . . . 1 1-1 研究動機與目的 . . . . . . . . . . . . . . . . . . 1 1-2 論文結構 . . . . . . . . . . . . . . . . . . . . . . 2 二、 相關研究 . . . . . . . . . . . . . . . . . . . . . . 3 2-1 主成份分析 (PCA) 原理 . . . . . . . . . . . . . 3 2-2 最近特徵線轉換 (NFLE) . . . . . . . . . . . . . 6 2-3 模糊理論 (Fuzzy Theory) . . . . . . . . . . . . . 8 2-3-1 模糊理論的基本概念 . . . . . . . . . . . . . . . 8 2-3-2 模糊集合論 . . . . . . . . . . . . . . . . . . . . 9 2-3-3 Fuzzy 集合的基本運算 . . . . . . . . . . . . . . 10 三、 模糊最近特徵線轉換 . . . . . . . . . . . . . . . 13 3-1 以主成份分析 (PCA) 進行特徵值擷取 . . . . . . 13 3-2 Fuzzy NFLE . . . . . . . . . . . . . . . . . . . . 13 3-2-1 NFLE . . . . . . . . . . . . . . . . . . . . . . . 13 3-2-2 Fuzzy . . . . . . . . . . . . . . . . . . . . . . . 14 3-2-3 Fuzzy NFLE 之運用 . . . . . . . . . . . . . . . 15 四、 實驗結果 . . . . . . . . . . . . . . . . . . . . . . 18 4-1 CMU PIE Face Database 人像資料庫 . . . . . . 18 4-2 實驗環境 . . . . . . . . . . . . . . . . . . . . . . 20 4-3 實驗辨識結果 . . . . . . . . . . . . . . . . . . . 20 五、 結論與未來工作 . . . . . . . . . . . . . . . . . . 25 5-1 結論 . . . . . . . . . . . . . . . . . . . . . . . . 25 5-2 未來展望 . . . . . . . . . . . . . . . . . . . . . . 25 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    [1] wiki. Convenience store. 取自 http://zh.wikipedia.org/wiki/
    %E4%BE%BF%E5%88%A9%E5%95%86%E5%BA%97, 2014.
    [2] M. Kirby and L. Sirovich. ”application of the karhunen-loeve procedure for the characterization of human faces”. IEEE Transactions on
    Pattern Analysis and Machine Intelligence, 12:103–108, Jan 1990.
    [3] Matthew A. Turk and Alex P. Pentland. ”face recognition using
    eigenfaces”. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 586–591, Jun 1991.
    [4] 程敬智. Multi-view face recognition with unified subspace analysis.
    Master’s thesis, Jun 2010.
    [5] Lu Jyun-Liang. Face recognition under illumination and facial expression variation. Master’s thesis, Jul 2009.
    [6] Li-Yang. Face recognition. 取自 http://web2.utc.edu/~Li-Yang/
    documents/. University of Tennessee at Chattanooga.
    [7] S. Z. Li and J. Lu. ”face recognition using the nearest feature line
    method”. IEEE Transactions on Neural Networks, 10:439–433, Mar
    1999.
    [8] S. Z. Li, K. L. Chan, and C. L. Wang. ”performance evaluation of
    the nearest feature line method in image classification and retrieval”.
    IEEE Transactions on Pattern Analysis and Machine Intelligence,
    22:1335–1339, Nov 2000.
    [9] P.N.Belhumeur, J.P.Hespanha, and D.J.Kriegman. ”eigenfaces vs.
    fisherfaces: Recognition using class specific linear projection”. IEEE
    Transactions on Pattern Analysis and Machine Intelligence, 19:711–
    720, Jul 1997.
    27
    [10] Li. Zhao, Wei. Qi, S. Z. Li, S. Q. Yang, and H. J. Zhang. ”contentbased retrieval of video shot using the improved nearest feature line
    method”. Chinese Journal of Software, 13(4):586–590, April 2002.
    [11] Ying-Nong Chen. ”Face Recognition Using Nearest Feature Space
    Embedding”. PhD thesis, National Central University, Jan 2011.
    [12] Ying-Nong Chen, Chin-Chuan Han, Cheng-TzuWang, and KuoChinFan. ”face recognition using nearest feature space embedding”.
    IEEE Transactions on Pattern Analysis and Machine Intelligence,
    33:1073–1086, June 2011.
    [13] Yang-Lang Chang, Jin-Nan Liu, Chin-Chuan Han, and Ying-Nong
    Chen. ”hyperspectral image classification using nearest feature line
    embedding approach”. IEEE Transactions on Geoscience and Remote Sensing, 52:278–287, Jan 2014.
    [14] L. A. Zadeh. ”fuzzy sets”. Information And Control, 8:338–353,
    1965.
    [15] Terence Sim, Simon Baker, and Maan Bsat. ”the cmu pose, illumination, and expression (pie) database”. IEEE International
    Conference on Automatic Face and Gesture Recognition, page 53,
    2002.
    [16] Keller J M, Gray M R, and Givern J. A. ”a fuzzy k-nearest neighbor
    algorithm”. IEEE Transactions on Systems, Man and Cybernetics,
    15(4):580–585, July-Aug 1985.
    [17] Wankou Yang, Hui Yan, Jianguo Wang, and Jingyu Yang. ”face
    recognition using complete fuzzy lda”. International Conference on
    Pattern Recognition, pages 1–4, Dec 2008.
    [18] Duan Xu, Wang Fang, and Song Xiaoning. ”new discriminant analysis algorithm using fuzzy symmetrical scatter subspace”. Journal
    of Jiangsu University of Science and Technology, 24, Dec 2010.

    QR CODE
    :::