跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝東霖
Dong-Lin Hsieh
論文名稱: 嗜酸熱硫化葉菌的DNA結合蛋白Saci_0101之結構與功能分析
Structural and Functional Analysis of the DNA Binding Protein Saci_0101 from the Hyperthermophile Sulfolobus acidocaldarius
指導教授: 陳青諭
Chin-Yu Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 58
中文關鍵詞: 嗜酸熱硫化葉菌DNA結合蛋白DNA纏繞
外文關鍵詞: histone-like protein, Saci_0101, DNA packing
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞內的DNA需要被蛋白質纏繞,有效地縮小尺寸以便儲存於細胞內,而古生菌分為兩類,一類是似真核生物利用相仿組織蛋白的方式形成四聚體的核小體;另一類則是似原核生物,比如在古生菌硫化葉菌屬胞內,由一群分子量7-10 KDa的染色質蛋白質(Sul10a, Sul10b, Sul7d, Sul7c),將DNA纏繞形成緊密結構。蛋白質Saci_0101通常認為是參與DNA纏繞保存的蛋白質,在此篇研究中,我們解析出了蛋白質Saci_0101兩種不同晶格的結構,解析度分別為1.30 Å和1.40 Å。從結構中可以看出,蛋白質Saci_0101與其在硫磺礦硫化葉菌中同源蛋白Sso7c4之結構相當相似,都藉由-loop-相互交聯形成二聚體的構型,而進行點突變之Saci_0101 I20M也得到解析度1.55 Å的結構,有趣的是,經過點突變之後發現到與野生型的Saci_0101相比,Saci_0101 I20M的1 helix相對較短,B-factor數值也降低至僅有14,可以明顯看出突變過後的動態特性明顯降低。在偏極化螢光分析的實驗中,發現到Saci_0101與雙股DNA的結合力為1.23  0.19 M,這與其他古生菌硫化葉菌屬的其他非特異性的雙鏈DNA結合蛋白相當接近。而利用電子顯微鏡(Electron Microscope)觀察蛋白質與DNA結合機制後,也證明了Saci_0101可以使DNA纏繞,並且具有架橋的功能。


    Saci_0101 is commonly believed to be a histone-like protein involved in genomic DNA compaction from Sulfolobus acidocaldarius. Here, to obtain a detailed understanding of its architectural properties, we present two crystal structures of wild type Saci_0101 in different crystal forms at 1.30 Å and 1.40 Å resolution, respectively. The overall crystal structures of both wild type are similar with the homologues of Sso7c4 in S. solfataricus and have a homodimeric DNA-binding fold forming a swapped -loop- ‘Ying-Yang’ topology. The crystal structure of its single mutant, I20M also has been solved at 1.55 Å resolution. Interestingly, the single mutation by replacing Ile with Met leads to the shortening of 1 helix and even makes the mutant structure much more static than the wild type, proved by the very small B-factor of 14 in I20M structure. In fluorescence polarization study, wild type Saci_0101 binds to a 20-bp double-stranded DNA with a binding affinity of 1.23 ± 0.19 M, which is close to other nonspecific dsDNA-binding proteins in Sulfolobus species. The EM studies show Saci_0101 may shape DNA as a wrapper and a briddger, which suggests Saci_0101 play a role in DNA packaging and duplex stabilization at the elevated growth temperatures.

    目 錄 中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 viii 縮寫檢索表 ix 第一章 緒論 1 1-1 菌種 1 1-1-1古細菌域 1 1-1-2古生菌硫化葉菌屬 2 1-2 DNA結合蛋白 3 1-2-1古細菌中的DNA結合蛋白 3 1-2-2蛋白質Sso7c4和蛋白質Saci_0101 3 1-2-3 DNA結合蛋白質的構築功能 5 1-3 研究動機 6 第二章 材料與方法 7 2-1 建構目標蛋白質基因與載體 7 2-1-1 嗜酸熱硫化葉菌之菌株培養與全基因體萃取 7 2-1-2 聚合酶鏈鎖反應引子(PCR Primer)設計 9 2-1-3 聚合酶鏈鎖反應擴增目標基因 10 2-1-4 利用膠體電泳確認目標基因片段 11 2-1-5 純化基因片段 12 2-1-6 剪切反應(Digestion) 12 2-1-7 接合反應(Ligation) 12 2-1-8 轉型作用(Transformation) 13 2-1-9 基因定序 13 2-2 目標蛋白質之大量表現 15 2-2-1 測試最佳蛋白質表現條件 15 2-2-2 聚丙烯醯胺膠體電泳 15 2-2-3 大量表現蛋白質 16 2-3 目標蛋白質之純化 17 2-3-1 超音波震盪破菌 17 2-3-2 加熱純化 17 2-3-3 利用快速蛋白質液相層析儀純化蛋白質 17 2-3-4 冷凍乾燥 18 2-4 利用X-ray晶體繞射技術解析蛋白質之結構 19 2-4-1 預結晶試驗(Pre-Crystallization Test) 19 2-4-2 蛋白質結晶條件篩選 20 2-4-3 收集繞射數據 20 2-4-4 解決相位問題 21 2-4-5 結構的建立與優化 22 2-5 點突變(Site-Directed Mutagenesis) 23 2-5-1 點突變I20M 23 2-5-2 利用溶解度觀察蛋白質動態 24 2-6 蛋白質與DNA作用機制分析 25 2-6-1 偏極化螢光分析 25 2-6-2 利用電子顯微技術觀察蛋白質與DNA結合機制 25 第三章 結果 26 3-1 建構目標蛋白質基因與載體 26 3-2 蛋白質表現條件測試 27 3-3 測試蛋白質耐熱特性 28 3-4 利用陽離子交換樹脂層析純化蛋白質 29 3-5 預結晶試驗 31 3-6 蛋白質結晶條件篩選 32 3-7 蛋白質Saci_0101與點突變Saci_0101 I20M之結構描述 33 3-8 偏極化螢光分析 36 3-9 利用電子顯微技術觀察蛋白質與DNA結合機制 37 第四章 討論 39 4-1 蛋白質Saci_0101結構 39 4-2 點突變Saci_0101 I20M影響蛋白質動態 40 4-3 偏極化螢光DNA結合力分析 41 4-4 蛋白質與DNA結合機制 42 參考文獻 43

    1. Q. She et al., The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A 98, 7835-7840 (2001).
    2. L. Chen et al., The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187, 4992-4999 (2005).
    3. Y. G. Gao et al., The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA. Nat Struct Biol 5, 782-786 (1998).
    4. P. Agback, H. Baumann, S. Knapp, R. Ladenstein, T. Hard, Architecture of nonspecific protein-DNA interactions in the Sso7d-DNA complex. Nat Struct Biol 5, 579-584 (1998).
    5. B. N. Wardleworth, R. J. Russell, S. D. Bell, G. L. Taylor, M. F. White, Structure of Alba: an archaeal chromatin protein modulated by acetylation. EMBO J 21, 4654-4662 (2002).
    6. C. H. Hsu, A. H. Wang, The DNA-recognition fold of Sso7c4 suggests a new member of SpoVT-AbrB superfamily from archaea. Nucleic Acids Res 39, 6764-6774 (2011).
    7. M. S. Luijsterburg, M. F. White, R. van Driel, R. T. Dame, The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 43, 393-418 (2008).
    8. K. Nightingale, S. Dimitrov, R. Reeves, A. P. Wolffe, Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin. EMBO J 15, 548-561 (1996).
    9. K. K. Swinger, P. A. Rice, IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol 14, 28-35 (2004).
    10. R. Schneider et al., An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. Nucleic Acids Res 29, 5107-5114 (2001).
    11. S. Rimsky, Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol 7, 109-114 (2004).
    12. Z. Otwinowski, W. Minor, Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276, 307-326 (1997).
    13. M. D. Winn et al., Overview of the CCP4 suite and current developments. Acta Crystallogr D 67, 235-242 (2011).
    14. G. Langer, S. X. Cohen, V. S. Lamzin, A. Perrakis, Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3, 1171-1179 (2008).
    15. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallogr D 66, 486-501 (2010).
    16. G. N. Murshudov et al., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67, 355-367 (2011).
    17. A. M. Rossi, C. W. Taylor, Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc 6, 365-387 (2011).
    18. J. D. Griffith, G. Christiansen, Electron microscope visualization of chromatin and other DNA-protein complexes. Annu Rev Biophys Bioeng 7, 19-35 (1978).
    19. S. M. Hartig, Basic image analysis and manipulation in ImageJ. Curr Protoc Mol Biol Chapter 14, Unit14 15 (2013).

    QR CODE
    :::