跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝佳容
Chia-Jung Hsieh
論文名稱: 酵母菌valyl-tRNA synthetase附加區段的
Elucidating the biological functions of the appended domain of yeast ValRS
指導教授: 王健家
Chen-Chia Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 90
語文別: 中文
論文頁數: 72
中文關鍵詞: tRNA合成酶胺醯化作用
外文關鍵詞: valine, valine tRNA synthetase, Aminoacylation
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在酵母菌的系統中,相對應於每種胺基酸分別有兩套解碼自細胞
    核基因的tRNA 合成酵素。其中一套用於細胞質中的蛋白質合成作
    用,另一套則是在粒線體中執行反應。然而,在之前的研究中顯示
    VAS1 是酵母菌染色體中唯一能解碼valine tRNA 合成酵素的基因。此
    基因利用選擇性轉錄及轉譯作用同時合成細胞質及粒線體的valine
    tRNA 合成酵素。這兩個同功酵素具有幾乎完全相同的胺基酸序列,
    但是在粒線體valine tRNA 合成酵素的胺基端多了一組由46 個胺基酸
    組成的”粒線體標的訊號”,由於這兩個tRNA 合成酵素存在於不同的
    胞器內,使得它們在功能上並不能相互的取代。有趣的是,相較於原
    核生物的valine tRNA 合成酵素,酵母菌的細胞質valine tRNA 合成
    酵素在其胺基端多了一段由98 個胺基酸組成的附加區段。序列分析
    的結果顯示這個區段含有許多帶正電荷的胺基酸,不同於大部分合成
    酵素的附加區段,純化的valine tRNA 合成酵素的附加區段並不會鍵
    結tRNA ,在功能上也是可有可無,將大部分的附加區段由合成酵素
    中刪除並不影響它的活體內及活體外功能。值得注意的是,我們發現
    這個附加區段本身具有活化轉錄的功能,或許valine tRNA 合成酵素
    本身就是一個轉錄活化因子。


    In yeast, there typically are two distinct nuclear-encoded tRNA
    synthetases for each amino acid; one functions in the cytoplasm and the
    other in the mitochondria. However, evidence shows that VAS1 is the only
    gene coding for valyl-tRNA synthetase (ValRS) in the complete yeast
    genome. This gene encodes not only the cytoplasmic form of ValRS but
    also its mitochondrial isoform. These two ValRS enzymes have
    essentially identical polypeptide sequences, except for a 46-amino acid
    leader peptide at the N-terminus of the mitochondrial precursor, which
    functions as a mitochondrial targeting signal. Biochemical studies show
    that these two ValRS isoforms cannot distinguish tRNA species from the
    cytoplasm and mitochondria in vitro. Despite these similarities, these two
    ValRS species cannot substitute for each other in vivo, presumably due to
    differential partitioning. We show here that the appended domain of yeast
    ValRS, which is absent in its prokaryotic counterparts, is largely
    dispensable for the enzyme’s aminoacylation as well as complementing
    activities. Moreover, unlike the appended domains of other yeast tRNA
    synthetases, the appended domain of yeast ValRS does not appear to bind
    tRNA. Interestingly, this dispensable domain exhibits a strong
    transcriptional activation activity in a two-hybrid test, suggesting that
    ValRS might be involved in regulation of gene expression.

    目 錄 目錄-----------------------------------------------------------------------I 『表』目錄----------------------------------------------------------------------IV 『圖』目錄-----------------------------------------------------------------------V 縮字表--------------------------------------------------------------------------VII 第一章 緒論--------------------------------------------------------------------1 壹、簡介tRNA 合成酵素--------------------------------------------1 一、tRNA 合成酵素的生化功能 二、tRNA 合成酵素的分類 三、高等真核生物中tRNA 合成酵素的特性 貳、酵母菌中tRNA 合成酵素的分佈-----------------------------3 一、 蛋白質在哪裡合成? 二、要如何由一個基因得到兩個蛋白質產物? 參、簡介Valyl-tRNA synthetase-----------------------------------5 一、 ValRS 的生化特性 二、酵母菌中的ValRS 第二章 材料與方法----------------------------------------------------------7 壹、實驗材料-----------------------------------------------------------7 一、大腸桿菌株 二、 酵母菌株 三、 載體 四、核酸引子 貳、實驗方法-----------------------------------------------------------8 一、 核酸的製備 二、 大腸桿菌勝任細胞的製備與轉型作用 三、 酵母菌ValRS 附加區段基因的增幅與選殖 四、 酵母菌勝任細胞的製備與轉型作用 五、 大腸桿菌融合蛋白質的表現與純化 六、 酵母菌融合蛋白質的表現與純化 七、 西方墨點法 八、 酵母菌互補作用試驗 九、 胺醯化作用分析 十、聚丙烯醯胺親和力共電泳 第三章 結果------------------------------------------------------------------24 壹、酵母菌ValRS 的附加區段具有轉錄活化作用------------24 貳、酵母菌ValRS 的附加區段對於ValRS 缺失株的互補能 力並不重要-----------------------------------------------------25 參、酵母菌ValRS 的附加區段並不參與ValRS 的胺醯化作 用-----------------------------------------------------------------26 肆、酵母菌ValRS 的附加區段不會鍵結tRNA----------------27 伍、酵母菌ValRS 的附加區段不會鍵結DNA-----------------28 討論------------------------------------------------------------------30 參考文獻------------------------------------------------------------------------32 表----------------------------------------------------------------------------------38 圖----------------------------------------------------------------------------------40 附錄-------------------------------------------------------------------------------58

    參考文獻
    Arnez, J. G. and Moras, D. (1997) Structural and functional
    consideration of the aminoacylation reaction. TIBS. 22: 211-216.
    Azad, A. K., Stanford, D. R., Sarkar, S. and Hopper, A. K. (2001) Role
    of nuclear pools of aminoacyl-tRNA synthetases in tRNA nuclear
    export. Molecular Biology of the Cell. 12: 1381-1392.
    Borgford, T. J., Brand, N. J., Gray, T. E. and Fersht, A. R. (1987) The
    valyl-tRNA synthetase from Bacillus stearothermophilus has
    considerable sequence homology with the isoleucyl-tRNA
    synthetase from Escherichia coli. Biochemistry. 26: 2480-2486.
    Burbaum, J. J. and Schimmel, P. (1991) Structional relationships and
    the classification of aminoacyl-tRNA synthetases. J. Biol. Chem. 266:
    16965-16968.
    Cahuzac, B., Berthonneau, E., Birlirakis, N., Guittet, E. and Mirande,
    M. (2000) A recurrent RNA-binding domain is appended to
    eukaryotic aminoacyl-tRNA synthetases. EMBO J. 19: 445-452.
    Chatton, B., Walter, P., Ebel, J. -P., Lacroute, F. and Fasiolo, F. (1988)
    The yeast VAS1gene encodes both mitochondrial and cytoplasmic
    valyl-tRNA synthetase. J. Biol. Chem. 263: 52-57.Cusack, S. (1997) Aminoacyl-tRNA synthetase. Current Opinion in
    Structural Biology. 7: 881-889.
    Eriani, G., Delarue, M., Poch, O., Gangloff, J. and Moras, D. (1990)
    Partition of tRNA synthetases into two classes based on mutually
    exclusive sets of sequence motifs. Nature. 347: 203-206.
    Farrow, M. A., Nordin, B. E. and Schimmel, P. (1999) Nucleotide
    determinants for tRNA-dependent amino acid discrimination by a
    class I tRNA synthetase. Biochemistry. 38: 16898-16903.
    Felter, S., Diatewa, M., Schneider, C. and Stahl, A. J. (1981) Yeast
    mitochondrial and cytoplasmic valyl-tRNA synthetase. Biochem.
    Biophys. Res. Commun. 98: 727-734.
    Frugier, M., Florentz, C. and Giegé, R. (1992) Anticodon-independent
    aminoacylation of an RNA minihelix with valine. Proc. Natl. Acad.
    Sci. 89: 3990-3994.
    Galani, K., Großhans, H. Deinert, K. Hurt, E. C. and Simos, G. (2001)
    The intracellular location of two aminoacyl-tRNA synthetase
    depends on complex formation with Arc1p. EMBO J. 20:
    6889-6898.
    Hale, S. P., Auld, D. S., Schmidt, E. and Schimmel, P. (1997) Discrete
    determinants in transfer RNA for editing and aminoacylation.
    Science. 276: 1250-1252.
    Hashimoto, T., Sánchez, L. B., Shirakura, T., Muller, M. and
    Hasegawa, M. (1998) Secondary absence of mitochondria in
    Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA
    synthetase phylogeny. Proc. Natl. Acad. Sci. 95: 6860-6865.
    Heck, J. D. and Hatfield, G. W. (1988) Valyl-tRNA synthetase gene of
    Escherichia coli K12. J. Biol. Chem. 263: 857-867.
    Hendrickson, T. L., Nomanbhoy, T. K. and Schimmel, P. (2000) Errors
    from selective disruption of the editing center in a tRNA synthetase.
    Biochemistry. 39: 8180-8186.
    Horowitz, J., Chu, W. C., Derrick, W. B., Liu, J. C. –H., Liu, M. and
    Yue, D. (1999) Synthetase recognition determinants of E. coli valine
    transfer RNA. Biochemistry. 38: 7737-7746.
    Kaminska, M., Shalak, V. and Mirande M. (2001) The appended
    C-domain of human methionyl-tRNA synthetase has a
    tRNA-sequestering function. Biochemistry. 40: 14309-14316.
    Lin, L. and Schimmel, P. (1996) Mutational analysis suggests the same
    design for editing activities of two tRNA synthetase. Biochemistry.
    35: 5596-5601.
    Lin, L. and Schimmel, P. (1996) Mutational analysis suggests the same
    design for editing activities of two tRNA synthetases. Biochemistry.
    35: 5596-5601.
    Luo, D., Leautey, J., Grunberg-Manago, M. and Putzer, H. (1997)
    Structure and regulation of expression of the Bacillus subtilis
    valyl-tRNA synthetase gene. J. Bacteriol. 179: 2472-2478.
    Monnier, A., Bell e , R., Morales, J., Cormier, P., Boulben, S. and M-L,
    O. (2001) Evidence for regulation of protein synthesis at the
    elongation step by CDK1/cyclin B phosphrylation. Nucleic. Acids.
    Res. 29: 1453-1457.
    Natsoulis, G., Hilger, F. and Fink, G. R. (1986) The HTS1 gene encodes
    both the cytoplasmic and mitochondrial histidine tRNA synthetases
    of S. cerevisiae. Cell. 46: 235-243.
    Negrutskii, B. S., Shalak, V. F., Kerjan, P., El’skaya, A. V. and
    Mirande, M. (1999) Functional interaction of mammalian
    valyl-tRNA synthetase with elongation factor EF-1a in the complex
    with EF-1H. J. Biol. Chem. 274: 4545-4550.
    Pouplana, L. R. and Schimmel, P. (2001) Two classes of tRNA
    synthetases suggested by sterically compatible dockings on tRNA
    acceptor stem. Cell. 104: 191-193.
    Quevillon, S. and Mirande, M. (1996) The p18 component of the
    multisynthetase complex shares a protein motif with the ß and ?
    subunits of eukaryotic elongation factor 1. FEBS. 395: 63-67.
    Schimmel, P. and Schmidt, E. (1995) Making connections:
    RNA-dependent amino acid recognition. TIBS. 20:1-2
    Schimmel, P. and Wang, C. –C. (1999) Getting tRNA synthetases into
    the nucleus. TIBS. 24: 127-128.
    Souciet, G., Menand, B.,Ovesna, J., Cosset, A., Dietrich, A. and Wintz,
    H. (1999) Characterization of two bifunctional arabdopsis thaliana
    genes coding for mitochondrial and cytosolic forms of valyl-tRNA
    synthetase and threonyl-tRNA synthetase by alternative use of two
    in-frame AUGs. Eur. J. Biochem. 266: 848-854.
    Tardif, K. D., Liu, M., Vitseva, O., Hou, Y. M. and Horowitz, J. (2001)
    Misacylation and editing by Escherichia colivalyl-tRNA synthetase:
    evidence for two tRNA binding sites. Biochemistry. 40: 8118-8125.
    Wang, C. –C. and Schimmel P. (1999) Species barrier to RNA
    recognition overcome with nonspecific RNA binding domains. J.
    Biol. Chem. 274: 16508-16512.
    Wang, C. –C., Morales, A. J. and Schimmel, P. (2000) Functional
    redundancy in the nonspecific RNA binding domain of a class I
    tRNA synthetase. J. Biol. Chem. 275: 17180-17186.
    Weiner, A. M. (1999) Molecular evolution: aminoacyl-tRNA synthetases
    on the loose. Current Biology. 9: 842-844.
    Whelihan, E. F. and Schimmel, P. (1997) Rescuing an essential
    enzyme-RNA complex with a non-essential appended domain.
    EMBO J. 16: 2968-2974.

    QR CODE
    :::