跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡捷
Jie-Hu
論文名稱: 橋梁動態載重識別之多軸識別
Multi-Axle Loading Identification of Bridge
指導教授: 王仲宇
Chong-yu Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 172
中文關鍵詞: 狀態空間系統模態法Tikhonov正規化動態規劃
外文關鍵詞: modal method, state space system, Tikhonov regularization, Dynamic programming
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於建立一套現地B-WIN系統,以期可由橋梁結構的監測資料,來建立橋梁之荷載譜,協助橋梁工程師對於橋梁結構作有效的維護管理,確保用路人的行車舒適與安全。通過橋梁受移動荷載作用下所量測得到之多點應變歷時資料來識別出通過車輛之總重及軸重,這種方法稱之為橋梁動態載重識別 (Bridge Weigh-In-Motion)。本法結構動力方程式做為基本,進行橋梁動態載重識別,首先將所擬分析之橋梁結構有限元素化,推導出應變、外力荷載與自由度之間的關係,並利用對位移以形態函數分解的方式,以減少反算程式在反覆運算求解的所耗費的時間。藉由引入線性離散時間系統(Linear Discrete-Time System) 中的狀態空間系統(State-Space System)和在線性代數中求解近似值的Tikhono正規化法,利用動態規劃(Dynamic Programming)演算法進行反算,求解出橋梁上的移動載重。此外,使用商用軟體ANSYS分析橋梁模型結構受多軸移動載重之行為,將所算得之應變值代入反算程序中,驗證此多軸動態反算理論識別多軸移動載重之可行性與準確度。通過對橋梁結構模型的移動荷載作用之實驗,討論真實情況下出現的各種因素對於各軸識別準確性的影響,作為後續現地應用之參考。


    The goal of this research is to develop a bridge weigh- in- motion (BWIM) system to back calculate the axel and total load applied on the bridge by the measured strain data. A loading spectrum of the monitored bridge can be used for the effective maintenance and management work of the bridge. This multi-axel loading identification theory is based on the dynamic equations of bridge structures. The relations among the nodal freedoms, strains and external loads are derived from the theory of finite element method. The displacement field of the bridge structure is constructed by the shape functions of elements. Using the state space system, Tikhonov regularization method and the dynamic programming algorithm to reverse calculate the moving load on the bridge. Numerical simulation of the bridge structure is analyzed by the ANSYS code to obtain the strain data corresponding to the given moving load. Then, these strain data are applied into the backward analysis algorithm of the load identification to verify the feasibility and accuracy of this algorithm. This multi-axel loading identification algorithm was further evaluated through laboratory tests. Factors affect the accuracy of load identification are discussed as the reference for the future research and application.

    摘要 I Multi-Axle Loading Identification of Bridge II 誌謝 III 目錄 V 表目錄 IX 圖目錄 XI 第一章 緒論 - 1 - 1.1 研究動機與目的 - 1 - 1.2 論文架構 - 3 - 第二章 文獻回顧 - 4 - 第三章 理論方法 - 13 - 3.1 理論背景 - 13 - 3.2 力量與自由度的關係 - 13 - 3.2.1 力量與自由度關係之狀態空間方程式 - 13 - 3.2.2 外力配置矩陣 - 16 - 3.3 應變與自由度的關係 - 17 - 3.4 正規化法則 - 21 - 3.4.1 Tikhonov正規化法 - 21 - 3.4.2 正規化參數 - 23 - 3.5 動態反算問題之程式化 - 24 - 3.6 模態法 - 34 - 第四章 數值模擬與分析 - 37 - 4.1 二維簡支梁模擬 - 37 - 4.1.1 梁構件模型 - 37 - 4.1.2 梁元素參數 - 40 - 4.2 多軸力量追蹤 - 41 - 4.2.1 單速度軸移動力量加載形式 - 43 - 4.2.2 單速度軸應變結果與分析 - 44 - 4.2.3 單速度軸移動力量識別结果與分析 - 46 - 4.2.4 多速度軸移動力量加載形式 - 52 - 4.2.5 多速度軸應變結果與分析 - 53 - 4.2.6 多速度軸移動力量反算结果與分析 - 57 - 4.3 數值模擬結果與結論 - 77 - 第五章 實驗與分析 - 83 - 5.1 實驗室實驗試體與儀器設備 - 83 - 5.2 實驗儀器 - 85 - 5.3 主梁參數量測 - 86 - 5.3.1 自然振動頻率測量 - 86 - 5.3.2 彎曲剛度識別 - 88 - 5.3.3 應變測量位置 - 88 - 5.4 單速度軸載重識別 - 89 - 5.4.1 單速度軸移動荷載加載形式 - 89 - 5.4.2 單速度軸應變與車速 - 90 - 5.4.3 單速度軸載重識別結果與誤差 - 93 - 5.5 多速度軸載重識別 - 105 - 5.5.1 多軸移動荷載加載形式 - 105 - 5.5.2 多速度軸載重識別應變與車速 - 106 - 5.5.3 多軸移動荷載反算結果 - 109 - 5.6 小結 - 126 - 第六章 結論與建議 - 128 - 6.1 結論 - 128 - 6.2 建議 - 129 - 參考文獻 - 130 - 附錄 A - 134 - 附錄 B - 142 - 附錄 C - 144 -

    [1] Moses, F., (1978),Weigh-in-motion system using instrumented bridges. ASCE Journal of Transportation Engineering, 105, 233-249.
    [2] Peters, R. J., (1984), AXWAY – A System to Obtain Vehicle Axle Weights. Proceedings of the12th ARRB Conference, 12(1): 17-29.
    [3] Peters, R. J., (1986), An unmanned and undetectable highway speed vehicle weighing system. Proceedings 13th ARRB Conference. 13(6): 70-83.
    [4] Green,M & Cebon, D.,(1994) , Dynamic Response of Highway Bridges to Heavy Vehicle Loads:Theory and Experimental Validation,Journal of Sound and Vibration
    [5] Žnidarič, A. & Baumgärtner, W., (1998) , ‘Bridge Weigh-In-Motion Systems – An Overview’, in Pre-proceedings of the 2nd European Conference on Weigh-In-Motion, Eds. E.J. O’Brien &B. Jacob, Lisbon, Portugal, pp. 139-152, 1998.
    [6] O’Brien, E., Žnidarič, A., & Dempsey, A. T., (1999), Comparison of two independently developed bridge weigh-in-motion systems. Heavy Vehicle Systems, Int. J. of Vehicle Design. 6(1-4), 147-162.
    [7] Kalin, J., Znidaric, A., and Lavric, I., (2006) ,Practical Implementation of Nothing-On-The-Road Bridge Weigh-In-Motion System. 9th International Symposium on Heavy Vehicle Weights and Dimensions.
    [8] Pinkaew, T., (2002) , “Identification of Vehicle Axle Loads from Bridge Responses Using Updated Static Component Technique,” Engineering Structures, Vol. 28.
    [9] González, A., Dowling, J., O’Brien, E. J., and Žnidarič, A., "Testing of a Bridge Weigh-in-Motion Algorithm Utilising Multiple Longitudinal Sensor Locations," Journal of Testing and Evaluation, Vol. 40, No. 6, 2012, pp. 961-974
    [10] Gonzalez, A., Rowley, C. and OBrien, E.J. (2008), 'A general solution to the identification of moving vehicle forces on a bridge', International Journal for Numerical Methods in Engineering, in press.
    [11] González, A; Rowley, C.; O'Brien, Eugene J. (2008). A General Solution to the Identification of Moving Vehicle Forces on a Bridge. Wiley, pp.1599-1608.
    [12] Rowley CW, OBrien EJ, Gonzalez A, Žnidarič A (2008),Experimental testing of a moving force identification bridge weigh-in-motion algorithm. Exp Mech 49(5):743-746
    [13] Znidaric, Lavric,& Kalin(2005),”Nothing-on-the-road axle detection with threshold analysis” .
    [14] Yamada K., Ojio T., Fukada S., and Kajikawa Y. (2005), 'Use of Bridge Weigh-in-Motion System with Environmental Monitoring of Viaducts', The Second International Workshop on Structural Health Monitoring of Innovative Civil Engineering Structures, pp.335-345. Zhu, X.Q., Law, S.S.
    [15] 王寧波, 任新偉,賀文宇(2005),桥上移动车辆车轴识别小波变换方法,振動工程報,Aug.2013,Vol.26,No.4.
    [16] 趙華, (2005),基于小波变换的桥梁动态称重系统车轴高精度识别研究,湖南大學學報,Jul.2016, Vol.43,No.7.
    [17] Tokyo Sokki Kenkyujo (2005), Strain Checker FGMH-1, Brochure of Tokyo Sokki Kenkyujo Co. Ltd.
    [18] O’Brien E, Hajializadeh D, Uddin N, Robinson D,Opitz R (2012),Strategies for axle detection in bridge weigh-in-motion systems. In: Proceedings of the international conference on weigh-in-motion (ICWIM 6), pp 79–88
    [19] Schmidt F, Jacob B (2012), Experimentation of a bridge WIM system in France and applications to bridge monitoring and overload screening. In: 6th international conference on weigh-in-motion (ICWIM 6), pp 33–42
    [20] Lydon M, Taylor S, Robinson D (2014),Development of a bridge weigh-in-motion sensor: performance comparison using fibre optic and electric resistance strain sensor systems. IEEE Sens J 14(12):4284–4296
    [21] Dowling J, OBrien EJ, Gonzalez A (2012),Adaptation of cross entropy optimisation to a dynamic bridge wim calibration problem. Eng Struct 44:13–22
    [22] Zhao H, Uddin N, O’Brien E, Shao X, Zhu P (2014),Identification of vehicular axle weights with a bridge weigh-in-motion system considering transverse distribution of wheel loads. J Bridge Eng 19(3):04013008
    [23] Ojio T, Carey C, OBrien E, Doherty E, Taylor S (2015), Contactless bridge weigh-in-motion. ASCE J Bridg Eng: 1–27
    [24] OBrien E, X Schmidt F, Hajializadeh X, Zhou XY, Enright B (2015), A review of probabilistic methods of assessment of load effects in bridges. Struct Saf 53:44–56
    [25] Logan, D. L., (2000). A first Course in the Finite Element Method. 3rd edition, Wadsworth Group. Brooks/Cole.
    [26] Przemineiecki, J. S., (1968), Theory of Matrix Structural Analysis. 1st Edition McGraw Hill Book Co. New York, McGraw Hill Inc.
    [27] Reddy, J. N. (1984) , An Introduction to the Finite Element Method. 1th Edition,
    [28] Zienkiewicz, O. C. (1971). The Finite Element Method in Engineering Science.
    [29] Zienkiewicz, O. C., & Taylor, R. L. (2000),The Finite Element Method. 5th Edition.
    [30] Tikhonov, A. N., & Aresenin, V. Y., (1977),Solution of ill-posed Problems. New York: John Wiley & Sons.
    [31] Bellman, R. & Dreyfus, S. E., (1962), Applied DynamicP programming. The RAND Corporation Published, 1962, Princeton University Press.
    [32] Bellman, R., (1995),Introduce to Matrix Analysis. Society for Industrial and Applied Mathematics. Philadelphia 1995.
    [33] Chopra, (2012), Dynamic of structures Theory and Applications to Earthquake Engineering, Fourth Edition .
    [34] Hansen, P.C., (1998). Rank-Deficient and Discrete ill-posed Problems, Numerical Aspects of Linear Inversion. SIAM,1998,30 (4) :658-672
    [35] Ojio, T., Yamada, K. & Shinkai, H., (2000),BWIM Systems using Truss Bridges, Bridge Management Four Edited by M.J. Ryall, G.A.R. Parker and J.E. Harding, Thomas Telford, University of Surrey, UK, pp. 378-386.
    [36] Trujillo, D. M., (1977), The direct numerical integration for linear matrix differential equations using Pade approximations. International Journal for Numerical Methods in Engineering. Volume 9, Issue 2.
    [37] Trujillo, D. M., & Busby, H. R., (1992), Practical Inverse Analysis in Engineering. New York: CRC Press.
    [38] Richardson J, Jones S, Brown A, O’Brien E, Hajializadeh D (2014), On the use of bridge weigh-in-motion for overweight truck enforcement. Int J Heavy Veh Syst 21(2):83–104
    [39] Ieng S.-S, Zermane A, Schmidt F, Jacob B (2012),Analysis of B-WIM signals acquired in millau orthotropic viaduct using statistical classification. In: Proceedings of the international conference on weigh-in-motion (ICWIM 6), pp 43–52
    [40] Zhao Z, Uddin N, O’Brien E (2012), Field verification of a filtered measured moment strain approach to the bridge weigh-in-motion algorithm. In: Proceedings of the international conference on weigh-in-motion (ICWIM 6), pp 63–78
    [41] 陳士文,(2013),橋梁動態載重識別之直接正規化法,國立中央大學土木工程學系
    [42] 劉傳騰,(2014),橋梁動態載重識別之模态函數法,國立中央大學土木工程學系
    [43] 鐘宇承,(2016),複合版梁元素分析模型之橋梁動態識別法,國立中央大學土木工程學系

    QR CODE
    :::