| 研究生: |
陳東傑 Tung-chieh Chen |
|---|---|
| 論文名稱: |
金屬發泡材質子交換膜燃料電池堆流場特性之研究 Study on Flow Field Characteristics of Metal Foam Proton Exchange Membrane Fuel Cell Stack |
| 指導教授: |
曾重仁
Chung-jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 金屬發泡材、質子交換膜燃料電池堆、燃料電池堆歧管配置 |
| 外文關鍵詞: | manifold arrangement, metal foam, PEMFC |
| 相關次數: | 點閱:28 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了使燃料電池的應用符合功率與適當大小反應面積的需求,一般皆會組合單電池成為燃料電池堆,但此過程中每片單電池之性能會下降。下降之主因為反應氣體分布不均所造成的部分較弱單電池的影響。以金屬發泡材取代傳統流道所組成之質子交換膜燃料電池堆,有希望改善此問題。
本研究主要利用商用之CFD軟體 COMSOL,建構金屬發泡材之質子交換膜燃料電池堆之三維模型,並透過供/排氣歧管的配置方式與結構尺寸設計、連接管的結構尺寸設計與金屬發泡材的滲透率選擇等,進行電堆模型流場系統之流動速度、壓力與壓力降的分析。
根據本研究之模擬結果,採用新穎之環- Type設計的燃料電池堆,具有優於U-Type與Z-Type之流場流動分佈特性,其在電池與電堆歧管間的連接管尺寸設計上,應使用大的寬度,減少電堆歧管的背壓增加,而歧管截面尺寸的設計上,越大的尺寸時,歧管內的平均壓力與壓力降可以被降低,也對流場分佈有絕對的改善成果,在金屬發泡材的滲透率選擇上,低的滲透率能有不錯的流場流動分佈結果,當使用環- Type設計的燃料電池堆,滲透率降至1.95e-9m2時,流動分佈指標 可以降到2%以下。
Single cells are connected in series to form a fuel cell stack in order to produce proper power output. The power output per cell in a stack is usually smaller than that of a single cell. The degradation of efficiency is known to be caused by some weaker single cells, caused primarily by the unequal flow distribution of fuel and oxidant. Using metal foam to replace conventional flow channels may solve the problem.
In this study, I first construct a 3D model of metal foam PEM fuel cell stack by using commercial CFD software COMSOL. The pressure and flow field characteristics are analyzed and effects of inlet and outlet manifolds arrangement, the configuration and sizes of ducts, and metal foam permeability are investigated.
The results show that the novel circular-type design out-performs conventional U-Type and Z-Type designs. The diameter of the ducts between cells and manifolds should be large enough in order to reduce internal back pressure. Similarly, the diameter of the manifolds should also be large enough to reduce the pressure drop in the manifolds. On the other hand, the permeability of metal foam should be small to have uniform flow distribution. The flow non-uniformity index is under 2% if the permeability is smaller than 1.95e-9m2 when using circular-type design.
[1] W. Zhang, P. Hu, X. Lai, L. Peng, “ Analysis and optimization of flow distribution in parallel-channel configurations for proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 194, pp. 931-940, (2009).
[2] M. PAN, Z. Dehuai, T. Yong and C. Dongqing, “ CFD-based study of velocity distribution among multiple parallel microchannels,” Journal of Computers, Vol. 4, pp. 1133-1138, (2009).
[3] T. Fujioka, O. Tonomura, M. Kano, M. Noda, and S. Hasebe, “ Development of micro chemical process simulator: Design and Operation of Plate-Fin Microdevice,” The 10th Asian Pacific Confederation of Chemical Engineering(APCChE), CD-ROM,4B-06, Kitakyushu, Japan, Oct. 17-21 (2004).
[4] S. Y. Kim, W. N. Kim, “ Effect of cathode inlet manifold configuration on performance of 10-cell proton-exchange membrane fuel cell,” Journal of Power Sources, Vol. 166, pp. 430-434, (2007).
[5] A. C. Chang, J. St-Pierre, J. Stumper, B. Wetton, “Flow distribution in proton exchange membrane fuel cell stacks,” Journal of Power Sources, Vol. 162, pp. 340-355 (2006).
[6] G. Karimi, J. J. Baschuk, X. Li, “Performance analysis and optimization of PEM fuel cell stacks using flow network approach,” Journal of Power Sources, Vol. 147, pp. 162-177 (2005).
[7] C. Y. Wang, K. S. Chen, “Two-phase flow maldistribution and mitigation in polymer electrolyte fuel cells,” Journal of Fuel Cell Science and Technology by ASME, Vol. 6, 031007~1- 031007~11 (2009).
[8] 蘇仁寶,「流體於歧管式微型裝置流道內流場不均勻狀況數值分析」,碩士論文,中原大學機械工程學系,(2007)。
[9] 林晏正,「質子交換膜燃料電池燃料流道入出口幾何設計與流場分析」, 碩士論文,國立成功大學機械工程學系,(2003)。
[10] 吳一鳴,「整合商用CFD軟體及簡易型共軛梯度法進行燃料電池堆之最佳化設計」,碩士論文,國立成功大學機械工程學系,(2008)。
[11] 莊朝焮,「壓縮空氣供氣系統節能手冊」,財團法人中技社節能技術發展中心,pp. 40-43。
[12] S. Maharudrayya, S. Jayanti, A. P. Deshpande, “ Pressure drop and flow distribution in multiple parallel-channel configurations used in proton-exchange membrane fuel cell stacks,” Journal of Power Sources, Vol. 157, pp. 358-36 7, (2006).
[13] R. Mustata, L. Valiño, F. Barreras, M. I. Gil, A. Lozano, “ Study of the distribution of air flow in a proton exchange membrane fuel cell stack,” Journal of Power Sources, Vol. 192, pp. 185-189, (2009).
[14] S. Maharudrayya, S. Jayanti, A. P. Deshpande, “ Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells,” Journal of Power Sources, Vol. 144, pp. 94-106, (2005).
[15] J. Park, X. Li , “ Effect of flow and temperature distribution on the performance of a PEM fuel cell stack, ” Journal of Power Sources, Vol. 162, pp. 444-459, (2006).
[16] J. Scholta , F. Häussler, W. Zhang, L. Küppers, L. Jörissen, W. Lehnert, “ Development of a stack having an optimized flow field structure with low cross transport effects,” Journal of Power Sources, Vol. 155, pp. 60-65, (2006).
[17] J. H. Koh, H. K. Seo, C. G. Lee, Y. S. Yoo, H. C. Lim, “ Pressure and flow distribution in internal gas manifolds of a fuel-cell stack, ” Journal of Power Sources, Vol. 115, pp. 54-65, (2003).
[18] J. C. K. Tong, E. M. Sparrow, J. P. Abraham , “Geometric strategies for attainment of identical outflows through all of the exit ports of a distribution manifold in a manifold system,” Applied Thermal Engineering, Vol. 29, pp. 3552-3560, (2009).
[19] W. L. Huang, Q. Zhu, “ Flow distribution in U-type layers or stacks of planar fuel cells,” Journal of Power Sources, Vol. 178, pp. 353-362, (2008).
[20] J. Wang, “ Pressure drop and flow distribution in parallel-channel configurations of fuel cells: U-type arrangement,” International Journal of hydrogen energy, Vol. 33, pp. 6339-6350, (2008).
[21] J. Wang, “ Pressure drop and flow distribution in parallel-channel configurations of fuel cells: Z-type arrangement,” International Journal of hydrogen energy, Vol. 35, pp. 5498-5509, (2010).
[22] Y. Sung, “Optimization of a fuel-cell manifold, ”Journal of Power Sources, Vol. 157, pp. 395-400, (2006).
[23] S. Arisetty, A. K. Prasad, S. G. Advani , “ Metal foams as flow field and gas diffusion layer in direct methanol fuel cells,” Journal of Power Sources, Vol. 165, pp. 49-57, (2007).
[24] 陳君瑋,「多孔性極板滲流特性之數值研究」,碩士論文,國立成功大學機械工程學系,(2003)。
[25] A. Kumar, R. G. Reddy, “Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates,” Journal of Power Sources, Vol. 114, pp. 54-62, (2003) .
[26] 陳孟怡,「金屬發泡材質子交換膜燃料電池之研究」,碩士論文,國立中央大學機械工程學系,(2009)。
[27] R. V. Dybbs, R. V. Edwards, “A new look at porous media fluid mechanics – Darcy to turbulent,” Fundamentals of transport phenomena in porous media(Book), pp. 199-254 (1984).
[28] S. Mazumder and J. V. Cole, “Rigorous 3-D Mathematical modeling of PEM fuel cells,” Journal of Electrochemical Society, Vol. 147, pp. 1510- 1517, (2003).