跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉彥甫
Yen-fu Liu
論文名稱: X光影像之髖關節與膝關節手術電腦輔助術前評估規劃
On the Development of a Computer Aided Preoperative Planning System Based on X-Ray Images for Hip Joint Surgery and Knee Joint Surgery
指導教授: 賴景義
Jiing-Yih Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 83
中文關鍵詞: 膝關節醫病解說術前規劃輪廓辨識髖關節
外文關鍵詞: knee surgery, patient-doctor relationship, preoperative planning, contour detection., Femur surgery
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣步入高齡化社會,老年人的骨科疾病也日益趨多,其中因意外失足、年老退化等引起的關節手術尤為常見。目前手術前的規劃、醫病解說等,大多以口頭方式說明,解說的輔助工具包括病患X光影像、衛教圖片、人工骨與植入物等,實際上病患或其家屬在手術前真正能了解的資訊相當有限。提升醫病關係是政府所推動醫療政策,並隨著電腦軟、硬體科技與醫學影像技術的進步,電腦輔助醫病解釋系統的開發應是解決醫師解釋病情與手術治療的重要工具。在下肢骨折的診斷與手術實施中,大多數僅使用X光影像作為診斷與手術評估的資訊,即使電腦斷層在大多數醫院均已具備,X光仍是節省成本且不可取代的工具。因此,本研究擬發展以髖部骨折手術與人工關節置換手術為主的術前評估規劃系統,系統主要開發項目包含:(1) X光影像之輪廓辨識(2)髖關節DHS手術醫病解釋(3)人工膝關節手術術前規劃(4)觸控操作醫學影像系統等,藉此提供快速的圖像資訊、量化工具以及硬體的輔助,提升病患對於病發部位、手術告知以及術後復原狀況了解,同時希望能讓醫師進行術前規劃。


    The elderly orthopedic diseases are getting more and more popular recently as Taiwan has gone into aging society. Joint operation is a common surgery due to accident slip, degradation, etc., which occurs frequently in elderly people. At present, the preoperative planning and medical treatment explanation are mostly performed with verbal instructions. It is usually difficult for the patients and their families to fully understand the surgical process and the risk which might occur. Improving doctor-patient relationship is an important issue and is a government health care policy. With the advance in computer software and medical imaging technology, computer-assisted medical treatment system should be an important tool to help doctors in explanation. Although computed tomography has been widely used in most hospitals, its implementation in diagnosis and surgery for lower limb fractures is still limited. Most doctors use X-ray only in daily diagnosis and surgical planning for lower limb operation. This study aims to develop a preoperative assessment and planning system for hip fracture surgery and artificial joint replacement surgery. The proposed preoperative planning system is mainly composed of the following functions: (1) X-ray image contour detection, (2) hip DHS surgery assessment and explanation, (3) knee surgery preoperative planning, and (4) a touch screen operating mode for the entire system. It is expected that the proposed system can provide fast image information, quantitative tool for evaluation and hardware assistance to enhance the understanding of the disease site, surgical informing and the understanding of recovery status. Moreover, doctors can employ it for the preoperative planning of lower limb surgery.

    摘要 I Abstract II 誌謝 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 醫學影像邊界輪廓辨識 2 1.2.2 電腦輔助診斷 6 1.3 股骨近端與膝關節介紹 9 1.4 研究目的與方法 12 1.4.1 研究目的 12 1.4.2 研究方法 15 1.5 論文架構 16 第二章 X光影像之輪廓辨識 21 2.1 前言 21 2.2 基礎活線(Livewire)演算法 21 2.3 改良式活線(Livewire)演算法 25 第三章 髖關節DHS手術術前評估與規劃 36 3.1 DHS植體規劃 36 3.2 DHS植體匯入 41 3.3 術前復位模擬 43 3.4 輔助資料庫 45 第四章 人工膝關節手術術前評估與規劃 51 4.1 截骨尺寸分析 51 4.2 植體規劃 54 4.3 人工膝關節植體資料庫 57 4.4 植體X光模擬與力學軸分析 57 第五章 系統驗證與案例討論 61 5.1 前言 61 5.2 系統驗證與案例討論 61 5.2.1 髖部手術模組案例討論 61 5.2.2 膝部手術模組案例討論 71 第六章 結論與未來展望 77 6.1 結論 77 6.2 未來展望 78 參考文獻 80

    參考文獻
    [1] D. L. Pham, C. Xu and J. L. Prince, “Current methods in medical image segmentation”, Annual Review of Biomedical Engineering, Vol. 2, pp. 315-337, 2000.
    [2] 羅賴鈞,醫學影像之三維顯示與骨組織三角網格重建技術探討,國立中央大學機械工程學系碩士論文,2009。
    [3] T. Brox and J. Weickert, “Level set segmentation with multiple regions”, IEEE Trans. Image Process, Vol. 15, No. 10, pp. 3213-3218, 2006.
    [4] S. Lankton and A. Tannenbaum, “Localizing region-based active contours”, IEEE Transactions on Image Processing, Vol. 17, No. 11, pp. 2029-2039, 2008.
    [5] C. Li, C. Xu, C. Gui and M. D. Fox, “Distance regularized level set evolution and its application to image segmentation”, IEEE Trans. Image Process, Vol. 19, No. 12, pp. 3243-3254, 2010.
    [6] Y. Chen, X. H. Ee, W. K. Leow and T. S. Howe, “Automatic extraction of femur contours from hip X-ray images”, CVBIA 2005, Lecture Notes in Computer Science, Vol. 3765, pp. 200-209, 2005.
    [7] T. McInerney, “Sketchsnake: sketch-line initialized snakes for efficient interactive medical image segmentation”, Computerized Medical Imaging and Graphics, Vol. 32, No. 5, 2008.
    [8] K. Doi, “Computer-aided diagnosis in medical imaging: historical review, current status and future potential”, Comput. Med. Imag. Graph, Vol. 31, pp. 198-211, 2007.
    [9] F. P. Vidal, F. Bello, K. W. Brodlie, N. W. John and D. Gould, “Principles and applications of computer graphics in medicine”, Computer Graphics Forum, Vol. 25, No. 1, pp. 113-137, 2006.
    [10] T. T. Peng, “Detection of femur fractures in X-ray images”, PhD thesis, National University of Singapore, 2002.
    [11] T. P. Tian, Y. Chen, W. K. Leow, W. Hsu, T. S. Howe and M. A. Png, “Computing neck-shaft angle of femur for X-ray fracture detection”, In Proc. Int. Conf. on Computer Analysis of Images and Patterns (LNCS 2756), pp. 82-89, 2003.
    [12] D. W. H. Yap, Y. Chen, W. K. Leow, T. S. Howe and M. A. Png, “Detecting femur fractures by texture analysis of trabeculae”, In Proc. Int. Conf. on Pattern Recognition, 2004.
    [13] S. E. Lim, Y. Xing, Y. Chen, W. K. Leow, T. S. Howe and M. A. Png, “Detection of femur and radius fractures in X-ray images”, In Proc. 2nd Int. Conf. on Advances in Medical Signal and Information Processing, 2004.
    [14] V. L. F. Lum, W. K. Leow, Y. Chen, T. S. Howe and M. A. Png, “Combining classifiers for bone fracture detection in X-ray images”, In Proc. ICIP, 2005.
    [15] G. Zheng, S. Gollmer, S. Schumann, X. Dong, T. Feilkas and M. A. G. Ballester, “A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images”, Medical Image Analysis, Vol. 13, pp. 883-899, 2009
    [16] A. Herman, A. Deke, I. B. Botser and E. L. Steinberg, “Computer-assisted surgery for dynamic hip screw, using Surgix, a novel intraoperative guiding system”, The International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 5, pp. 45-50, 2009.
    [17] M. Seise, S. J. McKenna, I. W. Ricketts and C. A. Wigderowitz, “Segmenting tibia and femur from knee X-ray images”, In Procs. Medical Image Understanding and Analysis (MIUA), Bristol, pp.103-106, 2005.
    [18] 蔡翰進,膝關節X光影像之電腦測量與分析系統,國立成功大學資訊工程學系碩士班碩士論文,2007。
    [19] 鄭麗菁、鄭敦輝、陳建行與賴昆城,「醫用解剖學」,合記圖書出版社。
    [20] K. D. Bertakis, “The influence of gender on the doctorpatient relationship”, Patient Educ Couns, Vol. 76, pp. 356-360, 2009.
    [21] 施彥佑,骨科手術術前規劃之觸控平台發展,國立中央大學機械工程學系碩士論文,2012。
    [22] E. N. Mortensen and W. A. Barrett, “Interactive segmentation with intelligent scissors”, Graphic Models and image processing, Vol. 60, pp. 349-384, 1998.
    [23] 曾啟豪,電腦輔助髖部醫病解說與術前規劃系統發展,國立中央大學機械工程學系碩士論文,2009。
    [24] M. Marmor, C. Nystuen, N. Ehemer, R. T. McClellan and A. Matityahu, “Accuracy of in situ neck-shaft angle and shortening measurements of the anatomically reduced, varus malreduced and shortened proximal femur: can we believe what we see on the postoperative films? ”, Injury, Int. J. Care Injured, 2011.
    [25] Synthes: http://www.synthes.com/Pages/default.aspx

    QR CODE
    :::