跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖御超
YU-CHAO LIAO
論文名稱: 在不同電極火花間距之貧油汽油主要參考燃料的層、紊流最小引燃能量量測
Measurements of Laminar and Turbulent Minimum Ignition Energies on A Lean Gasoline Primary Reference Fuel at Various Electrode-Spark Gaps
指導教授: 施聖洋
Shenq-Yang Shy
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 85
中文關鍵詞: 層流和紊流最小引燃能量紊流促進引燃現象最小引燃能量轉變火花電極間距效應路易斯數效應
外文關鍵詞: Laminar and turbulent minimum ignition energies, turbulent facilitated ignition, minimum ignition energy transition, electrode gap distance effects, Lewis number effect
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用高溫高壓雙腔體三維十字型風扇擾動紊流預混燃燒設備,配合電極火花引燃及其能量量測系統,量測汽油主要替代燃料(Primary reference fuel, PRF;即異辛烷加正庚烷)之層流與紊流最小引燃能量(Laminar and turbulent minimum ignition energy, MIET and MIEL)。此外,本實驗利用燃油預蒸發系統與加熱系統以確保PRF能夠被完全汽化。實驗條件為初始溫度T = 373K、初始壓力P = 1atm、當量比(equivalence ratio)  = 0.8,其有效Lewis數為Le ≈ 2.95 > 1,方均根紊流擾動速度u' = 0 ~ 3.68 m/s。實驗結果主要包含三個部分:(1)量測PRF於不同混合比例下即不同辛烷值(Research octane number, RON = 0 - 100)之MIEL。實驗結果發現MIEL首先會隨著RON的上升而緩慢上升,當經過一臨界值約RON = 90時,MIEL會劇烈上升,整體呈現一非線性曲線。 (2)選定PRF95於不同電極探針間距(Electrode gap distance, dgap = 0.8 ~ 2.0 mm)條件下,進行層流(u' = 0 m/s)與紊流(u' = 2.76 m/s)之MIE量測,探討MIET與MIEL隨dgap之變化,並嘗試找出發生紊流促進引燃現象(Turbulent facilitate ignition, TFI)即MIET < MIEL之臨界dgap。實驗結果發現TFI僅存在於dgap = 0.8 mm,此時MIET = 30.1 mJ < MIEL = 26.8 mJ。在dgap = 1.0 mm時MIET = 24.4 mJ ≈ MIEL = 24.9 mJ,而在dgap = 1.5 與2.0 mm情況下,MIET >> MIEL,由以上結果可推測發生TFI的臨界電極探針間距為dgap = 1.0 mm。此外,根據MIET與MIEL隨dgap變化之關係,我們發現MIEL約正比於dgap-3,而MIET則正比於dgap-0.3,可知MIEL對於dgap的變化較MIET敏感。(3)選定dgap = 0.8與2.0 mm條件下,分別量測其紊流效應。在固定dgap = 0.8 mm條件下,我們發現MIET值隨著u'值之增加呈現非單調曲線,即當u' < 2.76 m/s有TFI (MIET < MIEL),最小MIET值發生於u' = 1.84 m/s,而當u' > 2.76 m/s時,MIE會大幅度地上升,此時MIET > MIEL,情節又回到傳統認知,即紊流會使引燃更加困難。而於2.0 mm情況下,我們發現一MIE轉變(MIE Transition)現象,MIET值會先隨著u'值增加而呈線型上升,於u' = 2.3 m/s後,MIET值會隨u'值之增加而呈指數性急遽地增加。此外,計算發生MIE轉變臨界點之Karlovitz數(Karlovitz number),即臨界Karlovitz數(Kac),將之與先前文獻所量測之不同燃料:貧油氫氣( = 0.18, Le = 0.3)、富油氫氣( = 5.1, Le = 2.3)、甲烷( = 0.6-1.3, Le ≈ 1.0)與貧油異辛烷( = 0.8, Le = 2.98)進行比較,觀測Kac隨Le的變化。結果發現Kac會隨著Le的上升而下降,呈現一關係式:Kac ~ Le-2,顯示在預混紊流火燄區域圖(Regime diagram of premix turbulent flames)中發生MIE轉變之標準需考量Le之變化。


    This thesis measures laminar and turbulent minimum ignition energies (MIET and MIEL) for binary blends of iso-octane and n-heptane, referred to as Primary Reference Fuel (PRF), at initial condition of T = 373K, P = 1 atm, equivalence ratio  = 0.8 with effective Lewis number Le = 2.95 >> 1 over wide ranges of r.m.s. turbulent fluctuation velocity u' = 0 ~ 3.68 m/s. Spark ignition experiments are conducted in a high pressure/temperature, fan-stirred, large dual-chamber, premixed turbulent 3D cruciform combustion facility capable of generating isotropic turbulence with electrical spark ignitor and energy measurement system. A heating system and a pre-vaporized system are applied to make sure that PRF can be well evaporated. The results mainly consist of three parts: (1) MIEL is measured on the blends of iso-octane and n-heptane showing the effect of research octane number (RON). Result shows that the MIEL firstly increases gradually with RON. Then, after a critical value about RON = 90, the MIEL increases drastically showing a non-linear curve. (2) The MIE of PRF95/air mixture is measured under laminar (u' = 0 m/s) and turbulent (u' = 2.76 m/s) condition with different electrode gap distance (dgap) and trying to find the critical dgap that occurs turbulent facilitate ignition (TFI, namely MIET < MIEL). Results show that TFI is found only at dgap = 0.8 mm < 1 mm that MIET = 30.1 mJ < MIEL = 26.8 mJ, while MIET = 24.4 mJ ≈ MIEL = 24.9 mJ at dgap = 1 mm. The situation comes back to common notion that turbulence makes ignition more difficult that MIET > MIEL at dgap = 1.5 and 2 mm > 1 mm. The result suggests that the critical dgap might be dgap = 1 mm. Moreover, according to the correlation of MIE and dgap, MIEL is proportional to dgap-3, but MIET is proportional to dgap-0.3 showing that MIEL is relatively sensitive to dgap effect compare to MIET. (3) MIET is measured over a wide range of u' with two different dgap which is 0.8 mm (TFI) and 2.0 mm (No TFI), respectively. At dgap = 0.8 mm, we discover the curve of MIET versus u' is non-monotonic: TFI (MIET < MIEL) occurs when u' < 2.76 m/s, where the lowest MIET takes place at u' = 1.84 m/s. When u' > 2.76 m/s, MIET increases drastically and the scenario returns back to the common notion that turbulence renders ignition more difficult. Furthermore, at dgap = 2 mm, a MIE transition is found, in which the value of MIET firstly increases linearly with the increase of u' and then its increase becomes exponentially when u' > 2.3 m/s. Moreover, the critical Karlovitz number (Kac) indicating the Ka at turning point of MIE transition is calculated. The result plotted with previous data: lean hydrogen ( = 0.18, Le = 0.3), rich hydrogen ( = 5.1, Le = 2.3), methane ( = 0.6 ~ 1.3, Le ≈ 1.0), and iso-octane ( = 0.8, Le = 2.98). It shows that Kac increases with the decrease of Le having a correlation of Kac ~ Le-2, which suggests that the criterion of Kac that occurs MIE transition in Borghi diagram should consider about the effect of Le.

    摘要 i Abstract iii 致謝 v Content vi List of Tables viii List of Figures ix Nomenclature xii 第一章 導論 1 ChapterⅠ Introduction 3 1.1 Background and motivation 3 1.1.1 Premixed lean and turbulent combustion technology 3 1.1.2 Minimum Ignition Energy 5 1.1.3 MIE transition and turbulent facility ignition 5 1.1.4 Primary reference fuel 6 1.2 Objectives of this study 6 1.3 Thesis outline 7 第二章 文獻回顧 8 Chapter II Literature Review 11 2.1 The formation and development of the flame 11 2.2 Concept and definition of minimum ignition energy 12 2.3 The parameter that affect minimum ignition energy 12 2.3.1 Fuel species and equivalence effect 12 2.3.2 Initial temperature and pressure effect 13 2.3.3 Quenching distance and electrode gap effect 14 2.3.4 Electrode geometry and material effect 14 2.4 Turbulence 15 2.4.1 MIE transition 16 2.4.2 Turbulent facilitated ignition 20 第三章 實驗設備與方法 37 Chapter Ⅲ Experimental facility and method 39 3.1 Premixed turbulent combustion facility 39 3.1.1 Heating system on the 3D cruciform burner 40 3.1.2 Fuel pre-vaporization system 40 3.2 Minimum ignition energy measurement 41 3.2.1 Logistical Regression 41 3.3 Experimental procedure 42 第四章 實驗結果與討論 48 Chapter IV Results and Discussions 50 4.1 RON effect on MIE 50 4.2 Electrode gap distance effect on MIE 51 4.3 The turbulence effect on MIE for different dgap 52 第五章 結論與未來工作 60 Chapter V Conclusion and Future Work 62 5.1 Conclusion 62 5.2 Future work 63 References 64

    [1] https://www.statista.com/statistics/827460/global-car-sales-by-fuel-technology/
    [2] The European Commission. Reducing CO2 emissions from passenger cars. https://ec.europa.eu/clima/policies/transport/vehicles/cars_en#tab-0-0
    [3] Council of the EU. CO2 emission standards for cars and vans: Council confirms agreement on stricter limits. https://www.consilium.europa.eu/en/press/press-releases/2019/01/16/co2-emission-standards-for-cars-and-vans-council-confirms-agreement-on-stricter-limits/
    [4] https://www.isuzu.co.jp/world/technology/clean/diesel_gasoline02.html
    [5] ”Jidosha-Gijutsu year book” Journal of Society of Automotive Engineers of Japan, Vol. 71, 2017
    [6] https://www8.cao.go.jp/cstp/panhu/sip_english/4-6.pdf
    [7] K. Maruta, H. Nakamura, Super Lean-burn in SI Engine and Fundamental Combustion Studies, J. Combust. Soc. JPN. 183 (2016) 9-19.
    [8] N. Hayashi, A. Sugiura, Y. Abe, K. Suzuki, Development of Ignition Technology for Dilute Combustion Engines. SAE International Journal of Engines 10 (2017) 984-995.
    [9] K. Nakata, S. Nogawa, D. Takahashi, Y. Yoshihara, A. Kumagai, T. Suzuki, Engine Technologies for Achieving 45% Thermal Efficiency of S.I. Engine, SAE International Journal of Engines 9 (2016) 179-192.
    [10] N. Peters, Premixed Lean and Turbulent Combustion Technology, Journal of Fluid Mechanics 384 (1999) 107-132
    [11] M. AlAbbada, T. Javeda, F. Khaleda, J. Badrab, A. Farooq, Ignition delay time measurements of primary reference fuel blends, Combust. Flame 178 (2017) 205-216.
    [12] C.C. Huang, S.S. Shy, C.C. Liu, Y.Y. Yan, A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes, Proc. Combust. Inst. 31 (2007) 1401-1409.
    [13] S.S. Shy, W.T. Shih, C.C. Liu, More on minimum ignition energy transition for lean premixed turbulent methane combustion in flamelet and distributed regimes, Combust. Sci. Technol. 180 (2008) 1735-1747.
    [14] S.S. Shy, C.C. Liu, W.T. Shih. Ignition transition in turbulent premixed combustion. Combust. Flame 157 (2010) 341-350.
    [15] M.W. Peng, S.S. Shy, Y.W. Shiu, C.C. Liu, High pressure ignition kernel development and minimum ignition energy measurements in different regimes of premixed turbulent combustion, Combust. Flame 160 (2013) 1755-1766.
    [16] S.S. Shy, Y.W. Shiu, L.J. Jiang, C.C. Liu, S. Minaev, Measurement and scaling of minimum ignition energy transition for spark ignition in intense isotropic turbulence from 1 to 5 atm, Proc Combust. Inst. 36 (2016) 1785-1791.
    [17] L.J. Jiang, S.S. Shy, M.T. Nguyen, S.Y. Huang, D.W. Yu, Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion, Combust. Flame 187 (2018) 87-95.
    [18] S.S. Shy, M.T. Nguyen, S.Y. Huang, Effects of electrode spark gap, differential diffusion, and turbulent dissipation on two distinct phenomena: Turbulent facilitated ignition versus minimum ignition energy transition, Combust. Flame 205 (2019) 371-377.
    [19] K. Ishii, O. Aoki , Y. Ujiie, M. Kono, Investigation of ignition by composite sparks under high turbulence intensity conditions. Symp. Combust 24 (1992) 1793-1798.
    [20] F. Wu, A. Saha, S. Chaudhuri, C.K. Law, Facilitated ignition in turbulence through differential diffusion, Physical Review Letter 113 (2014) 024503(1-5).
    [21] S.S. Shy, M.T. Nguyen, S.Y. Huang, C.C. Liu, Is turbulent facilitated ignition through differential diffusion independent of spark gap? Combust. Flame 185 (2017) 1-3.
    [22] C.V. Callahan, T.J. Held, F.L. Dryer, R. Minetti, M. Ribaucour, L.R. Scochet, T. Faravelli, P. Gaffuri, E. Rani, Experimental data and kinetic modeling of primary reference fuel mixtures, Symp. (Int.) Combust. 26 (1996) 739-746.
    [23] K. Fieweger , R. Blumenthal , G Adomeit ,Self-ignition of S.I. engine model fuels: a shock tube investigation at high pressure, Combust. Flame 109 (1997) 599–619.
    [24] S. Tanaka, F. Ayala, J.C. Keck, A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine, Combust. Flame 133 (2003) 467–481.
    [25] S. Tanaka, F. Ayala, J.C. Keck, J.B. Heywood, Two-stage ignition in HCCI combustion and HCCI control by fuels and additives, Combust. Flame 132 (2003) 219–239.
    [26] M.E. Baumgardner, S.M. Sarathy, A.J. Marchese, Autoignition Characterization of Primary Reference fuels and n-heptane/n-butanol mixtures in a constant volume combustion device and homogeneous charge compression ignition engine, energy fuels 27 (2013) 7778-7789.
    [27] S.M. Sarathy , G. Kukkadapu , M. Mehl , W. Wang , T. Javed , S. Park , M.A . Oehlschlaeger , A . Farooq , W.J. Pitz , C.-J. Sung , Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures, Proc. Combust. Inst. 35 (2015) 249–257.
    [28] Y. Huang, C.J. Sung, J.A. Eng, Laminar flame speeds of primary reference fuels and reformer gas mixtures, Combust. Flame 139, (2004) 239-251.
    [29] Y.H. Liao, W.L. Roberts, Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method, Energy Fuels 30, (2016) 1317-1324.
    [30] H. Wei, D. Gao, L. Zhou, S. Petrakides, R. Chen, D. Feng, J. Pan, Experimental study on laminar flame characteristics of methanePRF95 dual fuel under lean burn conditions, Fuel (2016) 185, 254-262.
    [31] S. Jerzembeck, N. Peters, P. Pepiot-Desjardins, H. Pitsch, Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation, Combust. Flame 156 (2009) 292–301.
    [32] C. Cardin, B. Renou, G. Cabot, A.M. Boukhalfa, Experimental analysis of laser-induced spark ignition of lean turbulent premixed flames: New insight into ignition transition, Combust. Flame 160 (2013) 1414-1427.
    [33] J.C. Steiner, W. Mirsky, Experimental determination of the dependence of the minimum spark ignition energy upon the rate of energy release, SAE Transactions 75 (1967) 392-407.
    [34] Y. Ko, R.W. Anderson, V.S. Arpaci, Spark Ignition of Propane-Air Mixtures Near the Minimum Ignition Energy: Part I. An Experimental Study, Combust. Flame 83 (1991) 75-87.
    [35] M. Kono, K. Hatori, K. Iinuma, Investigation on ignition ability of composite sparks in flowing mixtures, Symp. Combust. 20 (1985) 133-140.
    [36] B. Lewis, G. von Elbe, Combustion, Flame and Explosions of Gases, Academic Press, London (1987).
    [37] J. Moorhouse, A. Willams, T. Maddison, An investigation of the minimum ignition energies of some C1 to C7 hydrocarbons, Combust. Flame 23 (1974) 203-213.
    [38] T.W. Lee, V. Jain, S. Kozala, Measurement of minimum ignition energy by using laser sparks for hydrocarbon fuels in air: propane, dodecane, and jet-A fuel, Combust. Flame 125 (2001) 1320-1328.
    [39] G. Cui, W. Zeng, Z. Li, Y. Fu, H. Li, J. Chen, Experimental study of minimum ignition energy of methane/air mixtures at elevated temperatures and pressure, Fuel 175 (2016) 257-263.
    [40] P.D. Ronney, Laser versus conventional ignition of flames, Opt. Eng. 33 (1994) 510-521.
    [41] M. Kono, S. Kumagai, T. Sakai, The optimum condition for ignition of gases by composite sparks, Symp. Combust. 16 (1977) 757-766.
    [42] D.R. Ballal, A.H. Lefebvre, The influence of spark discharge characteristics on minimum ignition energy in flowing gases, Combust. Flame 24 (1975) 99-108.
    [43] J. Han, H. Yamashita, N. Hayashi, Numerical study on the spark ignition characteristics of a methane–air mixture using detailed chemical kinetics: Effect of equivalence ratio, electrode gap distance, and electrode radius on MIE, quenching distance, and ignition delay, Combust Flame 157 (2010) 1414-1421.
    [44] H. Matsui, J.H. Lee, Influence of electrode geometry and spacing on the critical energy for direct initiation of spherical gaseous detonations, Combust. Flame 27 (1976) 217-220.
    [45] D.R. Ballal, A.H. Lefebvre, The influence of flow parameters on minimum ignition energy and quenching distance, Symp. Combust. 15 (1975) 1473-148
    [46] G.G. De Soete, The influence of isotropic turbulence on the critical ignition energy, Symp. Combust. 13 (1971) 735-743.
    [47] T. Horstmann, W. Leuckel, B. Maurer, U. Mass, Influence of turbulent flow conditions on the ignition of flammable gas/air‐mixtures, Process Saf. Prog. 20 (2001) 215-224.
    [48] R. Borghi, On the structure and morphology of turbulent premixed flames, Recent Advances in the Aerospace Sciences, Ed. C. Casci, (1985) 117-138, New York, Plenum.
    [49] N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge (2000).
    [50] V. Kurdyumov. J. Blasco, A.L. Sanchez, A. Lian, On the Calculation of the Minimum Ignition Energy, Combust. Flame 136 (2004) 394-397.
    [51] C.T. d’Auzay, V. Papapostolou, S.F. Ahmed, N. Chakraborty, On the minimum ignition energy and its transition in the localised forced ignition of turbulent homogeneous mixtures, Combust. Flame 201 (2019) 104-117.
    [52] S.S. Shy, W.J. Lin, J.C. Wei, An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion, Proc. R. Soc. Lond. A. 456 (2000) 1997-2019.
    [53] S.S. Shy, W.J. Lin, K.Z. Peng, High-intensity turbulent premixed combustion: General correlations of turbulent burning velocities in a new cruciform burner, Proc. Combust. Inst. 28 (2000) 561-568.
    [54] T.S. Yang, S.S. Shy, Two-way interaction between solid particles and homogeneous air turbulence: Particle settling rate and turbulence modification measurements, J. Fluid Mech. 526 (2005) 171-216.

    QR CODE
    :::