| 研究生: |
莊嘉智 Chia-Chih Chuang |
|---|---|
| 論文名稱: |
以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極 Fabrication of Carbon Nanofiber for Supercapacitor Electrodes by Laser Carbonization of Electrospun Carbon Nanofiber |
| 指導教授: | 何正榮 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 靜電紡絲 、雷射碳化 、超級電容 、碳奈米纖維 |
| 外文關鍵詞: | electrospinning, laser carbonization, super capacitors, carbon nanofibers |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以碳為原料作為電極的超級電容,不僅成本低廉,也能應用在更廣的溫度範圍。本研究先以靜電紡絲技術製備出奈米纖維膜,再運用雷射將奈米纖維膜快速碳化,形成碳奈米纖維膜作為雙電層電容的電極,運用靜電紡絲製備出來的纖維具有極佳的連續性,所製作出來的碳奈米纖維能有較好的導電性,降低電容的內電阻。碳奈米纖維上的孔洞特性,用在雙電層電容的電極是很好的選擇,使用雷射快速加熱增加孔洞量,也能用來提升電容。
在雷射碳化方面還有很多優點,相較於傳統以管式爐碳化,其加熱與降溫常需要數小時,而使用雷射碳化,可將製程時間減少至數分鐘、甚至數十秒。雷射可以使用更少的能量將碳化溫度提升到更高,增加能量使用效率,更高的碳化溫度也能有更好的石墨化程度,使碳奈米纖維電極的導電度更好。因此,對於應用在雙電層電容的碳奈米纖維電極,使用靜電紡絲加雷射碳化的方式,不僅提升生產效率、節省成本又能有效能的提升。
結果顯示,本研究所製作的碳奈米纖維,纖維直徑約300奈米,在未經任何活化過程下,比表面積33.63 m²/g,在使用3M KOH當電解質時,用三電極測試最高達到21.66 F/g的比電容值,是使用傳統管式爐加熱所獲碳奈米纖維電極的數倍。
Using carbon as an electrode, the supercapacitor not only has the advantage of reducing material costs, but also is applicable to a wider temperature range. In this study, the carbon-based nanofiber membrane electrode, for an electric double layer capacitor, was fabricated by the techniques of electrospinning and a follow-up laser carbonization. The fibers prepared by electrospinning take the advantage of excellent fiber continuity that leads to better electrode conductivity and lower internal resistance on the resulting supercapacitor. The characteristics of cavities and holes on the laser-carbonized nanofibers are beneficial for the electrodes of electric double layer capacitors. The rapid heating rate of the laser increases the number of holes in the nanofibers, thereby successfully improving the capacitance effect.
Compared with traditional tube furnace heating for carbonization, the heating and cooling cycles often take several hours, laser carbonization can reduce the processing time to several minutes or even tens of seconds. The laser can use less energy to raise the carbonization temperature to a higher level, increasing the energy use efficiency. A higher carbonization temperature also leads to a better degree of graphitization, which makes the carbon nanofiber electrode be more conductive. Therefore, the carbon nanofiber electrodes used in electric double-layer capacitors, that are obtained by electrospinning and laser carbonization, can not only improve production efficiency, but also effectively improves electrode performance.
Results show that the diameter of the carbon nanofibers fabricated in this study is about 300 nm. Without any activation process, the specific surface area can reach 33.63 m²/g. When using 3M KOH as the electrolyte and characterized using a three-electrode tester, the specific capacitance is measured to be 21.66 F/g that is several times higher than the carbon nanofiber electrodes obtained by heating in a traditional tube furnace.
[1] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," in Nanoscience and technology: a collection of reviews from Nature journals: World Scientific, 2010, pp. 320-329.
[2] D. P. Dubal, O. Ayyad, V. Ruiz, and P. J. C. S. R. Gomez-Romero, "Hybrid energy storage: the merging of battery and supercapacitor chemistries," vol. 44, no. 7, pp. 1777-1790, 2015.
[3] L. L. Zhang and X. J. C. S. R. Zhao, "Carbon-based materials as supercapacitor electrodes," vol. 38, no. 9, pp. 2520-2531, 2009.
[4] K. Tian, L. Wei, X. Zhang, Y. Jin, and X. J. M. t. e. Guo, "Membranes of carbon nanofibers with embedded MoO3 nanoparticles showing superior cycling performance for all-solid-state flexible supercapacitors," vol. 6, pp. 27-35, 2017.
[5] T. Lin et al., "Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage," vol. 350, no. 6267, pp. 1508-1513, 2015.
[6] D. Qu and H. J. J. o. P. S. Shi, "Studies of activated carbons used in double-layer capacitors," vol. 74, no. 1, pp. 99-107, 1998.
[7] C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. J. N. l. Jang, "Graphene-based supercapacitor with an ultrahigh energy density," vol. 10, no. 12, pp. 4863-4868, 2010.
[8] J. Chen, W. Li, D. Wang, S. Yang, J. Wen, and Z. J. C. Ren, "Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors," vol. 40, no. 8, pp. 1193-1197, 2002.
[9] T. Kshetri, T. D. Thanh, S. B. Singh, N. H. Kim, and J. H. J. C. E. J. Lee, "Hierarchical material of carbon nanotubes grown on carbon nanofibers for high performance electrochemical capacitor," vol. 345, pp. 39-47, 2018.
[10] Y. Liu, Z. Zeng, B. Bloom, D. H. Waldeck, and J. J. S. Wei, "Stable Low‐Current Electrodeposition of α‐MnO2 on Superaligned Electrospun Carbon Nanofibers for High‐Performance Energy Storage," vol. 14, no. 3, p. 1703237, 2018.
[11] D. Li and Y. J. A. m. Xia, "Electrospinning of nanofibers: reinventing the wheel?," vol. 16, no. 14, pp. 1151-1170, 2004.
[12] R. J. T. R. J. Houtz, "" Orlon" Acrylic Fiber: Chemistry and Properties," vol. 20, no. 11, pp. 786-801, 1950.
[13] J. J. J. o. P. S. Schurz, "Discoloration effects in acrylonitrile polymers," vol. 28, no. 117, pp. 438-439, 1958.
[14] A. Standage and R. J. E. P. J. Matkowsky, "Thermal oxidation of polyacrylonitrile," vol. 7, no. 7, pp. 775-783, 1971.
[15] A. J. E. S. P. B. V. Konkin, Handbook of Composites., "Properties of carbon fibres and fields of their application," vol. 1, pp. 241-273, 1985.
[16] H. Friedlander, L. Peebles Jr, J. Brandrup, and J. J. M. Kirby, "On the chromophore of polyacrylonitrile. VI. Mechanism of color formation in polyacrylonitrile," vol. 1, no. 1, pp. 79-86, 1968.
[17] A. Clarke and J. J. N. Bailey, "Oxidation of acrylic fibres for carbon fibre formation," vol. 243, no. 5403, pp. 146-150, 1973.
[18] J. Bailey and A. J. C. i. B. Clarke, "Carbon fibres," vol. 6, no. 11, pp. 484-&, 1970.
[19] P. Goodhew, A. Clarke, J. J. M. S. Bailey, and Engineering, "A review of the fabrication and properties of carbon fibres," vol. 17, no. 1, pp. 3-30, 1975.
[20] M. S. A. Rahaman, A. F. Ismail, A. J. P. d. Mustafa, and Stability, "A review of heat treatment on polyacrylonitrile fiber," vol. 92, no. 8, pp. 1421-1432, 2007.
[21] X. J. M. Huang, "Fabrication and properties of carbon fibers," vol. 2, no. 4, pp. 2369-2403, 2009.
[22] P. Lott, J. Stollenwerk, and K. J. J. o. L. A. Wissenbach, "Laser-based production of carbon fibers," vol. 27, no. S2, p. S29106, 2015.
[23] D. Go et al., "Laser carbonization of PAN-nanofiber mats with enhanced surface area and porosity," vol. 8, no. 42, pp. 28412-28417, 2016.
[24] D. Go et al., "Electrochemical characterization of laser‐carbonized polyacrylonitrile nanofiber nonwovens," vol. 135, no. 25, p. 46398, 2018.
[25] B. Mendoza-Sánchez, T. Brousse, C. Ramirez-Castro, V. Nicolosi, and P. S. J. E. A. Grant, "An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte," vol. 91, pp. 253-260, 2013.
[26] T. Brezesinski, J. Wang, S. H. Tolbert, and B. J. N. m. Dunn, "Ordered mesoporous α-MoO 3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors," vol. 9, no. 2, pp. 146-151, 2010.