| 研究生: |
胡翔 Xiang Hu |
|---|---|
| 論文名稱: |
超解析成像法應用於光學衛星影像之比較 Comparison of Super-Resolution Techniques for Optical Satellite Imagery |
| 指導教授: |
任玄
Hsuan Ren |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學與工程學系 Department of Space Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 超解析 、深度學習 、神經網路 |
| 外文關鍵詞: | super-resolution, deep learning, neural network |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
遙測衛星的影像已經被廣泛的應用於生活中,像是農業的物種分析、水質的監測與環境變遷,都對生活帶來非常大的助益。但由於衛星的空間解析度受到限制,在光學衛星影像中,無法觀察出較為細部的地表特徵,因此許多超解析成像 (Super-Resolution imaging, SR) 方法已被發展,可以透過軟體及硬體的方式來提高空間解析度 (spatial resolution)。而傳統超解析成像是建立於插值法 (interoplation) 之上,雖然雙線性插值法、最近相鄰插值法或雙三次插值法能達到超解析的效果,但像素與像素間的的高頻細節卻不能被完整的修復。
本研究將三種影像特徵提取的超解析成像法,應用於光學衛星影像中並進行比較。稀疏編碼超解析成像法 (Sparse Coding Super-Resolution,SCSR),是基於單幅影像的超解析度重建。影像可以被表示為一個稀疏線性組合和經由影像訓練而來的字典 (dictionary),並且將低解析度中的影像塊(patches) 計算後所得到的稀疏表示係數應用於高解析度中進而重建高解析度影像;卷積神經網路超解析成像法 (Super-Resolution Convolutional Neural Network, SRCNN),則利用滑動視窗 (sliding window) 於不同隱藏層中進行影像的特徵提取,並且改變隱藏層中的權重以建立良好的神經網路來重建高解析度影像;快速卷積神經網路超解析成像法 (Fast Super-Resolution
Convolutional Neural Network, FSRCNN),進一步將卷積神經網路超解析成像法的神經網路進行修改,以達到更有效率的超解析成像及更高的精準度。
本實驗利用歐洲太空總署哥白尼計劃下的Sentinel-2 光學衛星影像,進
行超解析成像的測試,並且分析雙三次插值法、稀疏編碼超解析成像法、卷積神經網路超解析成像法及快速卷積神經網路超解析成像法的重建影像之表現,並且利用均方誤差 (Mean Square Error, MSE) 及峰值訊雜比 (Peak Signal-to-Noise Ratio, PSNR) 來比較不同方法、不同放大倍率和不同地表物覆蓋率的影像。在此研究中,快速卷積神經網路超解析成像法,有較高的峰值訊雜比,且相對於傳統的超解析成像法,有特徵提取超解析成像法在重建影像中有較為顯著的表現。
Satellite imagery has a wild range of applications, such as agriculture, water quality and environmental monitor. Because of the spatial resolution, some details
cannot be observed in the optical satellite images. Many super-resolution (SR) approaches have been developed to improve the spatial resolution with computer
software or hardware. But the traditional ways are based on interpolation, such as bilinear interpolation and bicubic interpolation, usually cannot restore the high frequency spatial information.
In this study, three methods based on feature extraction are applied to the same remote sensing images and their performances evaluation are also conducted.
The sparse coding super-resolution (SCSR) seeks a sparse representation for each patch of low-resolution (LR) input, and then use the coefficients of the representation to reconstruct the high-resolution (HR) image. On the other hand, super-resolution convolutional neural network (SRCNN) uses sliding windows in different hidden layers to extract the feature of LR, and then updates the previous weights to reconstruct the HR image. Finally, the fast super-resolution convolutional neural network (FSRCNN) improves the computational efficiency
of SRCNN by modifying the neural network structure.
The Sentinel-2 optical satellite images are adopted in this experiments. Four methods are implemented for performance evaluation, including the traditional
bicubic interpolation, SCSR, SRCNN and FSRCNN. The root-mean-square error (RMSE) and peak-signal-to-noise ratio (PSNR) are compared in three aspects, between different methods, scaling factors and land-covers. Preliminary results show the FSRCNN is the best, and all the feature extraction methods are outperform the traditional interpolation approach.
[1] Greenspan, H. (2009). Super-resolution in medical imaging. The computer journal, 52(1), 43-63.
[2] Isaac, J. S., & Kulkarni, R. (2015, February). Super resolution techniques for medical image processing. In 2015 International Conference on Technologies for Sustainable Development (ICTSD) (pp. 1-6). IEEE.
[3] Lin, F., Fookes, C., Chandran, V., & Sridharan, S. (2007, August). Super-resolved faces for improved face recognition from surveillance video. In International Conference on Biometrics (pp. 1-10). Springer, Berlin, Heidelberg.
[4] Zhang, L., Zhang, H., Shen, H., & Li, P. (2010). A super-resolution reconstruction algorithm for surveillance images. Signal Processing, 90(3), 848-859.
[5] Dai, D., Wang, Y., Chen, Y., & Van Gool, L. (2016, March). Is image super-resolution helpful for other vision tasks?. In 2016 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 1-9). IEEE.
[6] Sajjadi, M. S., Scholkopf, B., & Hirsch, M. (2017). Enhancenet: Single image super-resolution through automated texture synthesis. In Proceedings of the IEEE International Conference on Computer Vision (pp. 4491-4500).
[7] Haris, M., Shakhnarovich, G., & Ukita, N. (2018). Task-driven super resolution: Object detection in low-resolution images. arXiv preprint arXiv:1803.11316.
[8] Keys, R. (1981). Cubic convolution interpolation for digital image processing. IEEE transactions on acoustics, speech, and signal processing, 29(6), 1153-1160.
[9] Timofte, R., De Smet, V., & Van Gool, L. (2014, November). A+: Adjusted anchored neighborhood regression for fast super-resolution. In Asian conference on computer vision (pp. 111-126). Springer, Cham.
[10] Yang, C. Y., & Yang, M. H. (2013). Fast direct super-resolution by simple functions. In Proceedings of the IEEE international conference on computer vision (pp. 561-568).
[11] Yang, J., Wright, J., Huang, T. S., & Ma, Y. (2010). Image super-resolution via sparse representation. IEEE transactions on image processing, 19(11), 2861-2873.
[12] Yang, J., Wang, Z., Lin, Z., Cohen, S., & Huang, T. (2012). Coupled dictionary training for image super-resolution. IEEE transactions on image processing, 21(8), 3467-3478.
[13] Dong, C., Loy, C. C., He, K., & Tang, X. (2015). Image super-resolution using deep convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2), 295-307.
[14] Dong, C., Loy, C. C., & Tang, X. (2016, October). Accelerating the super-resolution convolutional neural network. In European conference on computer vision (pp. 391-407). Springer, Cham.
[15] Johnson, J., Alahi, A., & Fei-Fei, L. (2016, October). Perceptual losses for real-time style transfer and super-resolution. In European conference on computer vision (pp. 694-711). Springer, Cham.
[16] Wang, Z., Chen, J., & Hoi, S. C. (2020). Deep learning for image super-resolution: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence.
[17] Islam, M. M., Asari, V. K., Islam, M. N., & Karim, M. A. (2010). Super-resolution enhancement technique for low resolution video. IEEE Transactions on Consumer Electronics, 56(2), 919-924.
[18] Li, X., Hu, Y., Gao, X., Tao, D., & Ning, B. (2010). A multi-frame image super-resolution method. Signal Processing, 90(2), 405-414.
[19] Ning, B., & Gao, X. (2013). Multi-frame image super-resolution reconstruction using sparse co-occurrence prior and sub-pixel registration. Neurocomputing, 117, 128-137.
[20] Glasner, D., Bagon, S., & Irani, M. (2009, September). Super-resolution from a single image. In 2009 IEEE 12th international conference on computer vision (pp. 349-356). IEEE.
[21] Yang, J., Wright, J., Huang, T., & Ma, Y. (2008, June). Image super-resolution as sparse representation of raw image patches. In 2008 IEEE conference on computer vision and pattern recognition (pp. 1-8). IEEE.
[22] He, H., & Siu, W. C. (2011, June). Single image super-resolution using Gaussian process regression. In CVPR 2011 (pp. 449-456). IEEE.
[23] Sun, J., Xu, Z., & Shum, H. Y. (2008, June). Image super-resolution using gradient profile prior. In 2008 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). IEEE.
[24] Freeman, W. T., Jones, T. R., & Pasztor, E. C. (2002). Example-based super-resolution. IEEE Computer graphics and Applications, 22(2), 56-65.
[25] Zeyde, R., Elad, M., & Protter, M. (2010, June). On single image scale-up using sparse-representations. In International conference on curves and surfaces (pp. 711-730). Springer, Berlin, Heidelberg.
[26] Capel, D., & Zisserman, A. (2001, December). Super-resolution from multiple views using learnt image models. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001 (Vol. 2, pp. II-II). IEEE.
[27] Duchon, C. E. (1979). Lanczos filtering in one and two dimensions. Journal of applied meteorology, 18(8), 1016-1022.
[28] Irani, M., & Peleg, S. (1991). Improving resolution by image registration. CVGIP: Graphical models and image processing, 53(3), 231-239.
[29] G. Freedman and R. Fattal, “Image and video upscaling from local self-examples,” TOG, vol. 30, 2011.
[30] Kim, K. I., & Kwon, Y. (2010). Single-image super-resolution using sparse regression and natural image prior. IEEE transactions on pattern analysis and machine intelligence, 32(6), 1127-1133.
[31] Xiong, Z., Sun, X., & Wu, F. (2010). Robust web image/video super-resolution. IEEE transactions on image processing, 19(8), 2017-2028.
[32] Yang, C. Y., Ma, C., & Yang, M. H. (2014, September). Single-image super-resolution: A benchmark. In European Conference on Computer Vision (pp. 372-386). Springer, Cham.
[33] LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems (pp. 396-404).
[34] Zeyde, R., Elad, M., & Protter, M. (2010, June). On single image scale-up using sparse-representations. In International conference on curves and surfaces (pp. 711-730). Springer, Berlin, Heidelberg.
[35] Chang, H., Yeung, D. Y., & Xiong, Y. (2004, June). Super-resolution through neighbor embedding. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. (Vol. 1, pp. I-I). IEEE.
[36] Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. science, 290(5500), 2323-2326.
[37] CGG, Passion for Geoscience. Retrieved from https://www.cgg.com/en/What-We-Do/GeoConsulting/NPA/Newsletters/March-2018-Issue-12/Introduction-to-Optical-Satellite-Imagery
[38] Satellite Imaging Corporation. Retrieved from https://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/spot-5/
[39] 李良輝、黃明哲、林奕翔、吳笛豪、張庭,2008,遙測影像資料庫建置關鍵技術及 基於內容的檢索研究(2/3),2-4。