| 研究生: |
藍志浩 Chih-Hao Lan |
|---|---|
| 論文名稱: |
考慮動態反應束制及關連性離散變數之結構最佳化設計 |
| 指導教授: |
莊德興
Der-Shih Juang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 290 |
| 中文關鍵詞: | 長細比束制 、關連性離散變數 、輕量化設計 、頻率反應振幅束制 、位移束制 、應力束制 、挫屈應力束制 、頻率束制 、離散拉格朗日法 |
| 外文關鍵詞: | buckling stress constraints, linked discrete variable, slenderness ratio constraints, frequency constraints, minimum weight design, frequency response amplitude constraints, discrete Lagrangian method, stress constraints, displacement constraints |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本文主要針對含關連性離散變數、靜態和動態反應束制之結構輕量化設計問題,提出三種以離散拉格朗日法(Discrete Lagrangian Method, DLM)為基礎的搜尋策略,其中靜態反應束制包括位移、應力、挫屈應力及長細比束制,動態反應束制包括頻率及頻率反應振幅的束制。研究中,首先針對DLM中的拉格朗日乘子的更新公式提出修正,避免每次迭代可能必須反覆更新拉格朗日乘子的缺失。接著探討DLM應用於關連性離散變數以及動態反應束制條件下所遭遇的困難,並對此提出動態擴大鄰點搜尋及改善震盪現象策略。最後,為了確保DLM的求解品質,本研究亦提出一種藉由折減拉格朗日乘子啟動再搜尋的方法,使DLM有機會跳脫一個局部最佳解區域搜尋另一局部最佳解。數個結構輕量化設計問題將分別用來探討其適用性和影響求解品質與效率的相關參數,並藉由設計結果之比較,來探討本文所發展之三種搜尋法的優缺點。
Abstract
This research studies the minimum weight design of structures with linked discrete variables, static and dynamic response constraints. Three discrete Lagrangian based searching procedures are proposed in this report. The static response constraints include displacement, stress, buckling stress and slenderness ratio. The dynamic response constraints include frequency and frequency response amplitude. In this research, an update formula for the Lagrange multiplies is developed first. The difficulties in applying the DLM to solve for problems containing linked discrete variables and dynamic response constraints are then discussed. To resolve the difficulties, a dynamic extending neighborhood technique and an improving strategy for eliminating fluctuated searching trajectory are proposed. Finally, a restarting procedure for the DLM by scaling down the values of Lagrange multipliers is also proposed to help the search escaping from a local minimum to search for another one. The feasibility of three procedures is validated by several design examples. The results from comparative studies of the DLM against other discrete optimization algorithms are reported to show the solution quality of the proposed DLM procedures. The advantages and drawbacks of the three DLM algorithms are also discussed.
參考文獻
[1] Juang, D. S., Wu, Y. T., and Chang, W. T., “Optimum Design of Truss Structures using Discrete Lagrangian Method,” Journal of the Chinese Institute of Engineers, Vol. 25, No. 6, pp. 755?766 (2003).
[2] 莊德興、吳朗益,「離散拉格朗日法於群樁基礎低價化設計之應用,」中國土木水利學刊,第十五卷,第二期,第93?104頁 (2003)。
[3] 莊德興、張慰慈,「DLM?GA混合演算法於大型桁架離散最佳化設計之應用」,電子計算機於土木水利工程運用研討會論文集,臺北市 (2003)。
[4] 莊德興、張慰慈、吳泳達,「離散拉格朗日演算法及其在結構最佳設計之應用」,電子計算機於土木水利工程運用研討會論文集,臺北市 (2003)。
[5] Wu, Z., “The Discrete Lagrangian Theory ans its Application to Solve Nonlinear Discrete Constrain Optimization Problems,” Master Thesis, Department of Computer Science, University of Illinois at Urbana?Champaign (1998).
[6] Garlinkel, R. and Nemhauser, G., Integer Programming, John Wiley and Sons, New York, N. Y. (1992).
[7] Gupta, O. K. and Ravindran, A., “Nonlinear Mixed Integer Programming and Discrete Optimization,” Progress in Engineering Optimization, R. W. Mayne and K. M. Ragsdell, New York, N. Y. pp. 297?520 (1984).
[8] Ringertz, U. T., “On Methods for Discrete Structural Optimization,” Engineering Optimization, Vol. 13, pp. 47?64 (1988).
[9] Cha, J. Z. and Mayne, R. W., “Optimization with Discrete Variables via Quadratic Programming, Part 2: Algorithms and Results,” Transactions of the ASME, Vol. 111, No. 3, pp. 130?136 (1989).
[10] Sandgren, E., “Nonlinear Integer and Discrete Programming in Mechanical Design Optimization,” Journal of Mechanical Design, ASME., Vol. 112, No. 2, pp. 223?229 (1990).
[11] Tseng, C. H., Wang, L. W. and Ling, S. F., “A Numerical Study of the Branch and Bound Method in Structural Optimization,” Technical Report, Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan (1992).
[12] Schmit, L. A. and Fleury, C., “Discrete?Continuous Variable Structural Synthesis Using Dual Methods,” AIAA Journal, Vol. 18, No. 4, pp. 1515?1524 (1980).
[13] Olsen, G. and Vanderplaats, G. N., “A Method for Nonlinear Optimization with Discrete Variables,” AIAA Journal, Vol. 27, No. 11, pp. 1584?1589 (1989).
[14] Vanderplaats, G. N., “General Purpose Optimization Software for Engineering Design,” Proc., 3rd Air Force / NASA Symp. On Recent Adv. In Multi Disciplinary Anal. and Iptimization, San Francisco, C. A (1990).
[15] Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P., “Optimization by Simulated Annealing,” Science, Vol. 220, pp. 671?680 (1983).
[16] Trosset, M. W., “What is Simulated Annealing,” Optimization and Engineering, Vol. 2, pp. 201?213 (2002).
[17] Geman, S. and Geman, D., “Stochastic Relaxation, Gibbs Distributions and the Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, pp. 721?741 (1984).
[18] Hajek, B., “Optimization by Simulated Annealing: A Nece? ssary and Sufficient Condition for Convergence,” in Adaptive Statistical Procedures and Related Topics, J. Van Ryzin, Institute of Mathematical Statistics: Hayward, C. A., pp. 417?427 (1986).
[19] Hajek, B., “Cooling Schedules for Optimal Annealing,” Mathematics of Operations Research, Vol. 13, pp. 311?329 (1988).
[20] Holland, J. H., “Outline for a Logical Theory of Adaptive System,” Journal of the Association for Computing Machinery, Vol. 3, pp.297?314 (1962).
[21] Davis, J. S., Handbook of Genetic Algorithms, Van Nostrand Reinhold (1991).
[22] Whitley, D., “The Genitor Algorithm and Seiection Pressure: Why Rank?Based Allocation of Reproductive Trials is Best,” Proceeding of the Third International Conference on Genetic Algorithms, J. D. Schaffer, pp. 116?121, Morgan Kaufmann Publishers, San Mateo, California (1989).
[23] Wu, S. J. and Chow, P. T., “The Application of Genetic Alogirthms to Discrete Optimation Problems,” Journal of the Chinese Society of Mechanical Engineers, Vol. 16, No. 6, pp. 587?598 (1995).
[24] Wu, S. J. and Chow, P. T., “Integrated Discrete and Configuration Optimization of Trusses Using Genetic Algorithms,” Computers and Structures, Vol. 55, No. 4, pp. 695?702 (1995).
[25] De Jong, K. A., “An Analysis of the Behavior of a Class of Genetic Adaptive Systems,” Ph.D. Dissertation, University of Michigan, Dissertation Abstracts International, No. 36, Vol. 10, 5140B. (University Microfilms No. 76?9381) (1975).
[26] Wah, B. W. and Shang, Y., A Discrete Lagrangian?Based Global?Search Metod for Solving Satisfiability Problems, Proc. DIMACS Workshop on Satisfiability Problems, Theory and Applications, Du, D.Z., Gu, J., and Pardalos, P., AMS (1996).
[27] 紀炤良,「結構在頻率限制下之最佳設計」,碩士論文,國立台灣大學土木工程研究所,臺北 (1987)。
[28] Pantelides, C. P. and Tzan, S. R., “Optimal Design of Dynamically Constrained Structures,” Computers and Structures, Vol. 62, No. 1, pp. 141?149 (1997).
[29] Tong, W. H. and Liu, W. H., “An Optimization Procedure for Truss Structures with Discrete Design Variables and Dynamics Constrains,” Computers and Structures, Vol. 79, pp. 155?162 (2001).
[30] Choi, Y. H., Bae, B. T., Kim, S. T. and Kim, T. H., “Static, Dynamic, and Sectional Topology Optimization of Structures Using a Genetic Algorithm with Dynamic Penalty,” The 6th International Conference on Engineering Design and Automation, Maui, Hawaii, 2002, pp. 610?616 (2002).
[31] 張慰慈,「DLM?GA混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢 (2003)。
[32] 吳泳達,「離散拉格朗日法於結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢 (2003) 。
[33] 莊德興,「桁架之形狀與離散斷面的整合輕量化設計」,第七屆結構工程研討會論文集,桃園大溪 (2004)。
[34] Arora, J. S., Introduction to Optimum Design, McGraw?Hill, (1989).
[35] Erbatur, F., Hasancebi, O., Tutuncu, I. and Kilic, H., “Optimal Design of Planar and Space Structures with Genetic Algorithms,” Computers and Structures, Vol. 75, pp. 209?224 (2000).
[36] AISC, Manual of Construction: Allowable Stress Design, 9nd Edition, Chicago, Illinois (1989).
[37] Groenwold, A. A. and Stander, N., “Optimal Discrete Sizing of Truss Structures Subject to Buckling Constraints,” Structural Optimization, Vol. 14, pp. 71?80 (1997).
[38] Groenwold, A. A., Stander, N. and Snyman, J. A., “A Regional Genetic Algorithms for the Discrete Optimal Design of Truss Structures,” International Journal for Numerical Methods in Engineering, Vol. 44, No.6, pp. 749?766 (1999).
[39] Haug, E. J. and Arora, J. S., Applied Optimal Design: Mechanical and Structural Systems, John Wiley & Sons, (1979).
[40] Chopra, A. K., Dynamics of Structures Theory and Applications to Earthquake Engineering, Prentice?Hall, (2000).
[41] Arora, J. S. and Tseng, C. H. “Interactive Design Optimization,” Engineering Optimization, Vol. 13, pp. 173?188 (1988).
[42] Tseng, C. H., Wang, L. W. and Ling, S. F., “Enhancing Branch?and?Bound Method for Structural Optimization,” Journal of Structural Engineering, ASCE., Vol. 121, pp. 831?837 (1995).
[43] Camp, C., Pezeshk, S. and Cao, G., “Optimized Design of Two?Dimensional Structures Using a Genetic Algorithm”, Journal of Structural Engineering, ASCE., Vol. 124, No. 5, pp. 551?559 (1998).
[44] Nanakorn, P. and Meesomklin, K., “An Adaptive Penalty Function in Genetic Algorithms for Structural Design Optimiation,” Computers and Structures, Vol. 79, pp. 2527?2539 (2001).
[45] McGee, O. G. and Phan, K. F., “A Robust Optimality Criteria Procedure for Cross?Sectional Optimization of Frame Structures with Multiple Frequency Limits,” Computers and Structures, Vol. 38, pp. 485?500 (1991).
[46] Salajegheh, E., “Optimum Design of Structures with High?Quality Approximation of Frequency Constraints,” Advances in Engineering Software, Vol. 31, pp. 381?384 (2000).