跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉宗慧
Zong-Hui Liu
論文名稱: 探討長QT症候群誘發心律不整時β-腎上腺素刺激所扮演的角色並找出抗心律不整的治療標的:理論的研究
Role of Beta-adrenergic Stimulation in Arrhythmogenesis and Potential Targeted Sites of Antiarrhythmic Therapy in LQT1 Syndrome: An Investigational Study
指導教授: 宋瑞珍
Ruey-Jen Sung
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 98
語文別: 中文
論文頁數: 104
中文關鍵詞: 細胞內鈣離子循環多型性心室心律不整長QT症候群β-腎上腺素刺激
外文關鍵詞: Intracellular Ca2+ cycling, BAS, Beta-adrenergic stimulation, Torsades de pointes, Long QT syndrome, TdP
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 長QT症候群(Long QT syndrome,LQTS)在心電圖上的特徵就是QT 間期延長(QT interval prolongation),同時伴隨著臨床上的徵狀有暈厥(syncope),心跳停止(cardiac arrest)或猝死(sudden death)。長QT症候群有很多種類型,其中第I型長QT症候群(LQT I)肇因於KCNQ1基因所編碼出的緩慢延遲整流型鉀離子通道(the slow delayed rectifier K+ current, IKs)失去了功能。臨床上的LQT1病人傾向於在運動時發生心律不整(arrhythmia),特別在游泳時發生的機率更高,而目前的第一線用藥貝塔阻斷劑(beta-blocker)只能提供不完整的保護作用。在本研究中,我們想要藉由電腦模擬來定義出β-腎上腺素刺激(Beta-adrenergic stimulation, BAS)所促成的心律不整之途徑,更重要的是找到有效的治療方式來避免心律不整的發生。我們應用了Luo-Rudy(LRd)心室心肌細胞模型來模擬LQT1及其中的細胞內鈣離子循環(Intracellular Ca2+ cycling)的情形。心臟不正常跳動的機轉有自主性跳動(automaticity),迴旋性(reentry)和促發自主性(triggered activity),而在治療策略中我們主要聚焦在BAS作用的五個通道:ICa,L、IKs、IK1、INaK和Iup,於BAS刺激下會使這些標靶通道增強或抑制其表現。我們期望能看到LQT1在BAS促進運作下所誘導的延遲去極化(delayed afterdepolarization, DAD)生成,並從中看到ICa,L和Iup會增強其電流,之後同時或單獨處理ICa,L和Iup抑制劑來找出有效濃度,未來也許可依此來對BAS受體阻斷劑的治療做調整,以期能得到最完整的保護作用。


    Long QT syndrome (LQTS) is referred to as a clinical constellation in which patients manifest episodic syncope, cardiac arrest or sudden death due to torsades de pointes associated with electrocardiographic QT prolongation and otherwise normal hearts. Of the ten types of LQTS, LQT1 is caused by mutations in the gene encoding KCNQ1 leading to “loss of function” of the IKs channel. Of note, clinically LQT1 patients tend to develop cardiac events during physical exertion (esp. swimming)[1] and beta-adrenergic receptor blocking agents provide only incomplete protection. In the proposed study, we sought to define mechanisms by which beta-adrenergic stimulation (BAS) provoke cardiac arrhythmias and more importantly to search for an alternative or adjunctive regimen for more effectively to prevent cardiac arrhythmias from occurrence. We plan to apply the Luo-Rudy ventricular myocyte model which has incorporated a relatively detailed dynamics of intracellular Ca2+ cycling to simulate LQT1. Mechanisms to be defined include abnormal automaticity, reentry, and triggered activity whereas potential targeted sites of therapy will be focused on components enhanced by BAS, ICa,L, IKs, IK1, INaK and Iup. We anticipate that LQT1 will have inducible delayed afterdepolarizations that are aggravated by BAS-induced enhancement of ICa,L and Iup, and an inhibitor capable of blocking both ICa,L and Iup should be an useful adjunctive to beta-adrenergic receptor blocking agents.
    Keywords:Long QT syndrome; Torsades de pointes; Beta-adrenergic stimulation (BAS); Intracellular Ca2+ cycling

    目錄 前言…………………………………………………………………………………1 1.實驗材料與方法……………………………………………………………………3 1.1.實驗材料 1.2. 心肌細胞模型 1.3.一維心肌纖維模型 1.4.β-腎上腺素刺激(β-Adernergic Stimulation, BAS) 1.5.實驗流程 2.實驗結果…………………………………………………………………………6 2.1.模型確認 2.2處理以及不處理BAS下的三層細胞與仿心電圖 2.3產生心律不整的臨界點 2.4.在BAS下,突變型(KCNQ1A344V)和異型合子(Heterozygous)將各通道之BAS一一剔除及單獨加入之效應   2.5.藥物模擬測試結果 3.討論和研究限制………………………………………………………………..10 參考文獻…………………………………………………………………………..11 圖表……………………………………………………………………………… 14 附錄………………………………………………………………………………28

    1. Grace Choi, Laura J. Kopplin, David J. Tester, Melissa L. Will, Carla M. Haglund
    and Michael J. Ackerman. Spectrum and Frequency of Cardiac Channel Defects
    in Swimming-Triggered Arrhythmia Syndromes.Cir Res 2004;110;2119-2124.
    2. Luo CH, and Rudy Y. A dynamic model of the cardiac ventricular action
    potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res 74:
    1097-1113, 1994.
    3. Gregory M. Faber, Jonathan Silva, Leonid Livshitz, and Yoram Rudy. Kinetic
    Properties of the Cardiac L-Type Ca21 Channel and Its Role in Myocyte
    Electrophysiology: A Theoretical Investigation. Biophysical Journal Volume 92
    Mar 27 2007; 1522–1543.
    4. Cornelia C. Siebrands, M.Sc., Stephan Binder, Ulrike Eckhoff, Nicole Schmitt,
    Ph.D., Patrick Friederich, M.D. Long QT 1 Mutation KCNQ1A344V Increases
    Local Anesthetic Sensitivity of the Slowly Activating Delayed Rectifier
    Potassium Current. Anesthesiology 2006; 105:511–20.
    5. Terrenoire C, Clancy CE, Cormier JW, Sampson KJ & Kass RS (2005). Autonomic control of cardiac action potentials: role of potassium channel kinetics in response to sympathetic stimulation. Circ Res 96, e25–34.
    6. Wataru Shimizu.The long QT syndrome: Therapeutic implications of a genetic diagnosis. Cardiovascular Research 67(2005) 347-356.
    7. Prakash C. Viswanathan, Robin M. Shaw and Yoram Rudy. Effects of IKr and IKs Heterogeneity on Action Potential Duration and Its Rate Dependence : A Simulation Study. Circulation 1999;99;2466-2474
    8. Ruey J. Sung, Yung-Han Wu, Nathan Hsing-Jung Lai, Chun-Hao Teng, Ching-Hsing Luo, Hui-Chun Tien,5 Chu-Pin Lo,5 and Sheng-Nan Wu.β- Adrenergic modulation of arrhythmogenesis and identification of targeted sites of
    antiarrhythmic therapy in Timothy (LQT8) syndrome: a theoretical study. Am J
    Physiol Heart Circ Physiol 298: H33–H44, 2010.
    9. Zeng J, and Rudy Y. Early afterdepolarizations in cardiac myocytes: Mechanism
    and rate dependence. Biophys J 68: 949-964, 1995.
    10. Igor Splawski, Jiaxiang Shen, Katherine W. Timothy, Michael H. Lehmann, Silvia Priori, Jennifer L. Robinson, Arthur J. Moss, Peter J. Schwartz, Jeffrey A. Towbin, G. Michael Vincent and Mark T. Keating. Spectrum of Mutations in Long-QT Syndrome Genes : KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000;102;1178-1185
    11. Claire Donger; Isabelle Denjoy, MD; Myriam Berthet; Nathalie Neyroud; Corinne Cruaud; Mohammed Bennaceur, MD; Guy Chivoret, MD; Ketty Schwartz, PhD; Philippe Coumel, MD; ; Pascale Guicheney, PhD. KVLQT1 C-Terminal Missense Mutation Causes a Forme Fruste Long-QT Syndrome. Circulation. 1997;96:2778-2781
    12. Rudy, Y., and J. Silva. 2006. Computational biology in the study of cardiac ion
    channels and cell electrophysiology. Q. Rev. Biophys. 39:57–116.

    QR CODE
    :::