跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林家緯
Chia-Wei Lin
論文名稱: Load Reduction Device Grouping for Massive MTC Applications
指導教授: 黃志煒
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 51
中文關鍵詞: 機器型態傳輸分群共享ID物聯網排程
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機器型態傳輸是一個能支援物聯網並可以滿足5G需求的通訊技術。大量的MTC傳輸會導致大量的信令並會造成核心網路和無線電接入網的負擔。在之前的解決方法裡,主要討論的方向為如何有效的在同一個群組分配裝置傳輸的排程。
    但大部份的文獻裡並沒有討論如果加入了物聯網的應用程式必須完成的時限會有什麼問題。
    在本篇論文裡將基於一個圖形模型提出一個演算法來最小化所需的分群數並考慮應用程式的時間限制。
    我們列出了最小畫分群數的問題包含了延遲的限制並將這個問題修改成裝箱問題的一個變化並有隨時變動的分組數字。
    這個問題可以利用MILP或是BFD演算法來解決。
    在結果部份我們比較了4種不同的分群方法: 區域分群、特性分群、BFD、MILP。


    Machine-Type Communication (MTC), an enabling communication technology, is actively evolving to support Internet of Things (IoT) and has become one of the 5G requirements.
    Massive MTC connections cause significant signaling overload to both the Radio Access Network (RAN) and Core Network (CN).
    Grouping devices to share resource has been widely adopted as a major solution to mitigate instantaneous signaling load in the previous works that focused on how to schedule the transmissions for the devices in the same group.
    However, most of the previous works did not put the execution time constraints for the IoT applications into consideration while they designed the schedule algorithms.
    In this thesis, considering the execution time constraints, we propose an algorithm based on a graph model to minimize the number of groups required for the devices.
    We formulate a group number minimizing problem with latency constraint as a variation of the bin packing problem with unique \emph{dynamic bin size} property,
    which can be solved by specifically designed mixed-integer linear programming (MILP) or a low complexity best fit decreasing (BFD) algorithm.
    Compared with methods using device location and features as grouping criteria, advantages of the group number minimizing strategy can be clearly observed.

    1 Introduction1 1.1 Motivation................................... 1 1.2 Contribution.................................. 2 1.3 Framework.................................. 2 2 Background of MTC/C-IoT 4 2.1 Definition and Generalities.......................... 4 2.2 Long Term Evolution(LTE)......................... 4 2.3 Architecture of C-IoT over LTE Rel.13.................... 5 2.4 Traffic Models for C-IoT........................... 6 2.4.1 Mobile Autonomous Reporting(MAR) Exception Reports..... 6 2.4.2 Mobile Autonomous Reporting(MAR) Periodic Reports...... 7 2.4.3 Network Command.......................... 7 2.4.4 Software Update/Reconfiguration Model.............. 8 2.5 Requirement in 5G............................... 8 2.6 Related Work................................. 9 3 System architecture 11 3.1 System model................................. 11 3.2 ID Sharing Scheme.............................. 12 3.3 Power Saving Mode Scheme......................... 12 3.4 Definition of Load.............................. 12 4 Problem Formulation 15 4.1 The Execution Model for IoT Applications.................. 15 4.2 Grouping benefit............................... 16 4.3 Grouping and Task Execution......................... 17 4.4 The Group Number Minimization Problem................. 18 5 Grouping Algorithms 22 5.1 MILP Solution with Fixed TimeConstraints................. 22 5.2 Best-Fit-Decreasing Solution with Dynamic Bin Size............ 23 5.3 Device Size.................................. 25 6 Performance Analysis 28 6.1 Simulation Setup............................... 28 6.2 Number of Tasks and Number of Devices.................. 30 6.3 Number of Groups and Task Missing Rates................. 31 6.4 Different Device Distribution......................... 33 7 Conclusion and Future Work 37 7.1 Conclusion.................................. 37 7.2 Futurework.................................. 37 Bibliography 38

    [1]3GPP. System improvements for machine-type communications (mtc) (release 11).
    Technical report, September 2012.

    [2]3GPP. Cellular system support for ultra-low complexity and low throughput internet of things (ciot). TR 45.820 V13.1.0, 2015.
    [3]3GPP. Architecture enhancements to facilitate communications with packet data net- works and applications. TS 23.682 V15.0.0, March 2017.
    [4]MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28)., 2015.
    [5]Guo Chen, Jiwei Huang, Bo Cheng, and Junliang Chen. A social network based approach for iot device management and service composition. In 2015 IEEE World Congress on Services, pages 1–8. IEEE, 2015.
    [6]M. Ito, N. Nishinaga, Y. Kitatsuji, and M. Murata. Reducing state information by sharing imsi for cellular iot devices. IEEE Internet of Things Journal, 3(6):1297– 1309, Dec 2016.
    [7]Kookjin Lee, JaeSheung Shin, Yongwoo Cho, Kab Seok Ko, Dan Keun Sung, and Heonshik Shin. A group-based communication scheme based on the location infor- mation of MTC devices in cellular networks. In 2012 IEEE International Conference on Communications (ICC), pages 4899–4903. IEEE, jun 2012.
    [8]S. Y. Lien, K. C. Chen, and Y. Lin. Toward ubiquitous massive accesses in 3gpp machine-to-machine communications. IEEE Communications Magazine, 49(4):66– 74, April 2011.
    [9]Ronald L. Graham Panos M. Pardalos, Ding-Zhu Du. Handbook of Combinatorial Optimization. Springer, 2nd Edition, 2005.

    [10]Hamidreza Shariatmadari, Rapeepat Ratasuk, Sassan Iraji, Andr e´s Laya, Tarik Taleb,
    Riku Ja¨ntti, and Amitava Ghosh. Machine-type communications: current status and future perspectives toward 5G systems. IEEE Communications Magazine, 53(9):10– 17, sep 2015.
    [11]K. Suto, H. Nishiyama, N. Kato, and C. W. Huang. An energy-efficient and delay- aware wireless computing system for industrial wireless sensor networks. IEEE Ac- cess, 3:1026–1035, 2015.
    [12]Tarik Taleb and Adlen Ksentini. On alleviating MTC overload in EPS. Ad Hoc Networks, 18:24–39, jul 2014.
    [13]Tarik Taleb, Adlen Ksentini, and Abdellatif Kobbane. Lightweight mobile core net- works for machine type communications. IEEE Access, 2:1128–1137, 2014.
    [14]Ang-Hsun Tsai, Li-Chun Wang, Jane-Hwa Huang, and Tzu-Ming Lin. Overload Control for Machine Type Communications with Femtocells. In 2012 IEEE Vehicular Technology Conference (VTC Fall), pages 1–5. IEEE, September 2012.
    [15]C. W. Tseng, R. Boisguene, C. W. Huang, P. Lin, and Y. Kawamoto. A scheduled grouping scheme for mtc device id sharing. In International Wireless Communica- tions and Mobile Computing Conference (IWCMC), pages 1307–1311, Aug 2015.
    [16]X. Wang, M. J. Sheng, Y. Y. Lou, Y. Y. Shih, and M. Chiang. Internet of things session management over lte ;balancing signal load, power, and delay. IEEE Internet of Things Journal, 3(3):339–353, June 2016.

    QR CODE
    :::