| 研究生: |
陳煜彬 Yu-Pin Chen |
|---|---|
| 論文名稱: |
應用機器視覺之新式晶圓定位方法 A Novel Method for Wafer Positioning Using Machine Vision |
| 指導教授: |
陳怡呈
Yi-Cheng Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 晶圓定位 、CCD 、影像處理 |
| 外文關鍵詞: | Image Processing, Machine Vision, Wafer Positioning |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一新式晶圓定位方法,應用機器視覺及影像處理技術,僅需利用一張影像即可計算晶圓在機械手臂之相對位置。將雷射光經由柱狀透鏡展開成一線段光線並投射於散射面上,架設CCD (Charge-Coupled Device)照相機於此散射面之上方。當特殊設計之機械手臂傳送晶圓通過該線段光線上方時,將部分遮斷線段光線。使用CCD 照相機擷取散射面上被遮斷之光線影像,再利用影像處理與所發展之演算法,即可得到晶圓與機械手臂之相對位置。
在取像參數設定方面,實際拍攝擴束光線影像,以影像灰階值不飽和為原則,選用適當的光圈及曝光時間,再由MTF (Modulation Transfer Function)曲線決定最佳之鏡頭工作距離,並針對鏡頭畸變現象進行校正。在定位實驗部分,先以較小的四吋晶圓進行靜態定位實驗,決定系統誤差之校正方法與實驗流程。之後以八吋晶圓進行靜態定位實驗,決定八吋晶圓定位實驗之校正參數,最後再進行八吋晶圓動態定位實驗,修正曝光時間後,成功擷取移動中之晶圓與手臂影像並進行晶圓定位計算,所得之平均定位誤差約0.37mm,誤差之標準差為0.18mm。最後亦說明實驗誤差來源以及改善系統準確度之建議方法。
This thesis proposes a novel method for detecting wafer position on a robot blade on the basis of machine vision. The wafer positioning system comprises two line-shaped beams spreading toward a scattering surface on the way of wafer transfer. The images taken from a CCD camera mounted above the scattering surface are analyzed, and the position of the wafer center on the robot blade can be determined after image processing.
The lens parameters are predetermined, in order to obtain a better precision of positioning results. The aperture and the exposure time are chosen on the grounds that the gray-level values from images of spread beams are unsaturated. The working distance is determined based on the MTF curves. Besides, the lens distortion is also corrected.
The procedure of the positioning experiment and the calibrating approaches of the system errors are determined in accordance with the positioning experiments of 4" wafers. Then, the calibrating parameters for 8" wafers were calculated through static positioning experiments of 8" wafers. Finally, real-time positioning experiments are successfully performed. The positions of wafer and robot can be estimated from the images captured when the wafer and robot are in motion. The experimental results reveal that the average error is about 0.37mm and the standard deviation of error is about 0.18mm.
[1] D. Cheng, W. W. Zhang, “System and Method for Detecting the Center of an Integrated Circuit Wafer”, U.S. Pat., 4819167, 1989.
[2] L. M. Berken, F. W. Freerks, W. H. Jarvi, and H. Sahin, “Wafer Positioning System”, U.S. Pat. 5740062, 1998.
[3] F. W. Freerks, L. M. Berken, M. U. Crithfield, D. Schott, M. Rice, M. Holtzman, W. Reams, R. Giljum, L. Reinke, and J. S. Booth, “Wafer Position Error Detection and Correction System”, U.S. Pat. 5980194, 1999.
[4] H. Tadashi, “Method of Detecting Position of Orientation Flat of Semiconductor Wafer”, JP Pat. 06-236918, Aug. 1994.
[5] P. Sagues, S. A. Gaudio, and T. K. Wong, “Wafer Aligner System”, U.S. Pat. 6275742, Aug. 2001.
[6] R. Fay, P. Peng, W. Chen, G. Tsai, and J. F. Chang, “Wafer Positioning Device”, U.S. Pat. 6471464, Oct. 2002.
[7] W. S. Yoo and K. Kang, “Wafer Alignment System and Method”, U.S. Pat. 6516244, Feb. 2003.
[8] L. Sha and Y. Li, “Transfer Apparatus and Method for Semiconductor Process and Semiconductor Processing System”, Jan. 2005.
[9] 陳建人等編著,光機電系統整合概論,財團法人國家實驗研究院儀器科技研究中心,新竹市,民國九十四年。
[10] 陳志隆等編著,光學系統設計進階篇,四版,民國91年。
[11] Gonzalez, Woods著,繆紹綱譯,數位影像處理,三版,台灣培生教育出版股份有限公司,台北市,民國98年。
[12] Alasdair McAndrew著,徐曉珮譯,數位影像處理,新加坡商聖智學習亞洲私人有限公司台灣分公司,台北市,民國98年。
[13] http://www.digital.idv.tw/DIGITAL/Classroom/MROH-CLASS/oh5/index-oh5.htm.
[14] http://140.126.145.74/software_web/CCD/Select-lens_CCD_light-source.PDF.
[15] N. Otsu, “A Threshold Selection Method from Gray-Level Histogram”, IEEE Transactions on Systems, Man and Cybernetics, Vol. 9, pp. 62-66, Jan. 1979.
[16] 陳世洲,「利用動態即時影像辨識於光碟機讀取頭校正應用」,國立中央大學資工系碩士論文,民國97年。
[17] 吳明衛,「自動化臉部表情分析系統」,國立成功大學資工系碩士論文,民國92年。
[18] 林長慶,「人體掃描機之研發與其點資料處理之研究」,國立成功大學機械系碩士論文,民國92年。
[19] 葉士豪,「以實際影像序列為依據之人臉動作模擬」,國立中山大學資工系碩士論文,民國90年。
[20] C.C. Slama ed. “Manual of Photogrammetry”, 4th edition, American Society of Photogrammetry, 1980.
[21] G. P. Stein, “Lens Distortion Calibration Using Point Correspondences”, Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ''97), pp.602, Jun, 17-19, 1997.
[22] X. Wang and R. Ning, “Accurate and Efficient Image Intensifier Distortion Correction Algorithm for Volume Tomographic Angiography”, Optical Engineering, Vol. 37, pp. 977-983, Mar. 1998.
[23] D. Xu, Y. F. Li, and M. Tan, “Method for Calibrating Cameras with Large Lens Distortion”, Optical Engineering, Vol. 45, Apr. 2006.
[24] A. Chtchetinine, “Radial Distortion in Low-cost Lenses: Numerical Study”, Optical Engineering, Vol. 47, Feb. 2008.
[25] Z. Zhang, D. Zhu, J. Zhang, and Z. Peng, “Improved Robust and Accurate Camera Calibration Method Used for Machine Vision Application”, Optical Engineering, Vol. 47, Nov. 2008.
[26] 林正淳,光學機構設計,三民書局,新竹縣,民國97年。
[27] Eugene Hecht, Optics, 4th edition, Pearson Addison Wesley, New York, 2002.
[28] Datasheet, http://www.schott.com.
[29] 余俊宏,「擬似粒子粒徑與水分多功能量測分析儀之設備開發」,國立台灣科技大學機械系碩士論文,民國96年。
[30] S. Shmookler, A. G. Weinberg, and M. J. McGrath, System and Method for Automated Positioning of a Substrate in a Processing Chamber, U.S. Pat. 5483138, 1996.
[31] 林任宏,「以視覺為基礎之移動自主定位系統」,國立中正大學電機系碩士論文,民國94年。