跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林柏辰
Bo-chen Lin
論文名稱: 地震數目改變率的計算及應用
A study of the changing rate of earthquake number
指導教授: 李顯智
Hsien-chi Li
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 84
中文關鍵詞: 地震預測相對強渡圖案資訊
外文關鍵詞: earthquake forecast, relative intensity, pattern informatics
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文提出ㄧ種計算地震活動變化的方法Acceleration Index (AI)應用於台灣地區,分析深度區間以及時間參數t0,t1,t2,∆tfor,∆tAfter的改變對於尋常值(Usual Mean)及近期平均值(Recent Mean)之影響,且透過AI map預測點之分布探討平均值之穩定性,最後並與PI方法作一對比。根據研究結果顯示, 時間的調整有助於了解台灣地區地震發生之平均值, ∆tfor的選取決定了與大地震有關紀錄之剔除。


    In the thesis, we propose a method called the acceleration index (AI) calculate the variations of earthquake activities in Taiwan. We analyzed
    the influence of different factors(t0,t1,t2,∆tfor,∆tAfter) to the usual mean and recent mean, and used the distribution of AI map pixels to discuss the stabilize of mean value. Finally, the AI method is compared with the PI method.
    According to the results of the survey, the adjustment of the time t0 is helpful to realize the average value of occurrence of earthquakes in Taiwan. The relevant records of strong earthquakes can be eliminated based on the selection of the value of ∆tfor.

    目錄 摘要 I 圖目錄 VII 表目錄 VIIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究內容 4 1.3 論文架構 4 第二章 研究方法 5 2.1 RI與PI預測 5 2.1.1 relative intensity (RI) 5 2.1.2 pattern informatics (PI) 6 2.2 ACCELERATION INDEX (AI)法的介紹 7 第三章 不同門檻值AI之分析 10 3.1 各深度區間之AI大於正的門檻值 16 3.1.1 深度區間0~400km與0~250km 17 3.1.2 深度區間0~100km 21 3.1.3 深度區間0~50km 24 3.1.4 深度區間0~30km 27 3.1.5 深度區間20km 30 3.2 AI小於負的門檻值 33 3.2.1 深度區間0~400km與0~250km 34 3.2.2 深度區間0~100km 37 3.2.3 深度區間0~50km 40 3.2.4 深度區間0~30km 43 3.2.5 深度區間0~20km 46 3.3 深度與門檻值之探討 49 3.3.1 各深度區間之AI分布 49 3.3.2 深深度區間20km,各層之AI分布 51 3.3.3 分析深度的選擇 53 3.3.4 門檻值的選擇 53 3.4 決定最終AI MAP 54 第四章 不同時間間隔平均值之探討 57 4.1  時間的改變 57 4.2  時間的改變 63 4.3  時間的改變 67 4.4  時間區間的改變 71 4.5  時間區間的改變 75 第五章 結論與建議 79 5.1 結論 79 6.2 建議 80 參考文獻 82

    Bufe, C. G. , and Varnes , D. J . , 1993.:Predictive modeling of the seismic cycle of the greater San Francisco Bay Region. J. Geophys. Res., 98: 9871~9883.
    Bufe, C. G. , Nishenko , S. P. , and Varnes , D. J . , 1994. Seismicity trends and potential for large earthquake in the Alaska-Aleutian region. Pure Appl . Geophys. ,142 : 83~99.
    Chen, C. C., 2006: From Tornadoes to Earthquakes: Forecast Verification for Binary Events Applied to the 1999 Chi-Chi, Taiwan, Earthquake. Terrestrial, Atmospheric and Oceanic Sciences TAO, Vol. 17, No. 3, 503-516.
    Chen, C. C., J. B. Rundle, J. R. Holliday, K. Z. Nanjo, D. L.Turcotte, S. C. Li, and K. F.Tiampo, 2005: The 1999 Chi-Chi, Taiwan, earthquake as a typical example of seismic activation and quiescence. Geophys. Res. Letts., 32, L22315, doi: 10.1029/2005GL023991.
    Gerstenberger, M. C., S. Wiemer, L. M. Jones, and P. A. Reasenberg, 2005: Real-time forecasts of tomorrow’s earthquakes in California. Nature, 435, 328-331.
    Gross , S. , and Rundle, J., 1998. A systematic test of time-to-failure analysis. Geophys. J. Int., 133: 57~64.
    James R. Holliday, John B. Rundle, Donald L. Turcotte, William Klein, Kristy F. Tiampo, and Andrea Donnellan 2006: Space-Time Clustering and Correlations of Major Earthquakes. Physical Review Letters, PRL97, 238501.
    Jaume, S. C., and L. R. Sykes, 1999: Evolving towards a critical point: A review of accelerating seismic moment/energy release prior to large and great earthquakes. Pure Appl. Geophys., 155, 279-306.
    J.R. Holliday, K.Z. Nanjo, K.F. Tiampo, J.B. Rundle, and D.L. Turcotte 2005: Earthquake forecasting and its verification. Nolinear Processes in Geophysics., 12, 965-977.
    J.R. Holliday, J.B. Rundle, K.F. Tiampo, and D.L. Turcotte 2006: Using
    earthquake intensities to forecast earthquake occurrence times. Nolinear Processes in Geophysics., 13, 585-593, 2006.
    Keilis-Borok, V., 2002: Earthquake prediction State-of-the-art and emerging possibilities.Annu. Rev. Earth Planet. Sci., 30, 1-33.
    Knopoff , L. , Levshina , T. , Keilis2Borok , V. I. , et al . , 1996. Increased
    long-range intermediate-magnitude earthquake activity prior to strong earthquakes in California. J. Geophys. Res., 101: 5779~5796.
    Rundle, J. B., W. Klein, K. F. Tiampo, and S. J. Gross, 2000a: Linear pattern dynamics in nonlinear threshold systems. Phys. Rev. E, 61, 2418-2431.
    Rundle, J. B., K. F. Tiampo, W. Klein, and J. S. S. Martins, 2002: Self-organization in leaky threshold systems: The influence of near-mean field dynamics and its implications for earthquakes, neurobiology, and forecasting. Proc. Natl. Acad. Sci. U.S.A., 99, 2514-2521.
    Rundle, J. B., D. L. Turcotte, R. Shcherbakov, W. Klein, and C. Sammis, 2003: Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Rev. Geophys., 41, 1019, doi:10.1029/2003RG000135.
    Tiampo, K. F., J. B. Rundle, S. McGinnis, S. J. Gross, and W. Klein, 2002a: Mean-field threshold systems and phase dynamics: An application to earthquake fault systems. Europhys. Lett., 60, 481-487.
    Tiampo, K. F., J. B. Rundle, S. McGinnis, and W. Klein, 2002b: Pattern dynamics and forecast methods in seismically active regions. Pure Appl. Geophys., 159, 2429-2467.
    Sornette , D. , and Sammis , C. G. , 1995. Critical exponents from renomalization group theory of earthquakes : implications for earthquake prediction. J. Phys. I., 5 : 607~619.
    Varnes , D. J . , 1989. Predicting earthquakes by analyzing accelerating precursory seismic activity. Pure Appl . Geophys., 130: 661~686.
    Wyss, M., 1997: Nomination of precursory seismic quiescence as a significant precursor. Pure Appl. Geophys., 149, 79-114.
    Wyss, M., and A. H. Martirosyan, 1998: Seismic quiescence before the M 7, 1988, Spitak earthquake, Armenia. Geophys. J. Int., 134, 329-340.
    Wyss, M., and S. Wiemer, 2000: Change in the probability for earthquakes in southern California due to the Landers magnitude 7.3 Earthquake. Science, 290, 1334-1338.

    QR CODE
    :::