跳到主要內容

簡易檢索 / 詳目顯示

研究生: 粘愷峻
Kai-Chun Nien
論文名稱: 活性碳與沸石吸附之工程實踐評估
Evaluation of Activated Carbon and Zeolite Adsorption for Field Application
指導教授: 張木彬
Moo-Been Chan
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 133
中文關鍵詞: 活性碳吸附沸石濃縮轉輪溶劑回收丁二酮均三甲苯揮發性有機物
外文關鍵詞: Activated carbon adsorption/desorption, zeolite adsorption rotor, solvent recovery, butanedione (BDO), mesitylene, volatile organic compounds (VOCs)
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 吸附(濾材)技術已廣泛應用於揮發性有機物(VOCs)之去除,乃一種有
    效的控制技術,固定床活性碳回收設備及沸石濃縮轉輪焚化系統技術為業
    界經常採用之技術,但實廠上仍面臨一些應用限制。有鑑於此,本研究致
    力於改善活性碳及沸石吸附系統之效能,以期提供相關改善建議方法及健
    全空氣污染防制技術,為提升空氣品質做出貢獻。於活性碳吸、脫附過程
    抑制丁二酮(butanedione, BDO)生成的研究方面,本研究測試5種商用活性
    碳、9種改質劑、3種溶劑、多種浸置時間與溫度的處理流程,超過28組以
    上的活性碳改質方法。實驗結果顯示使用適當的改質劑、較高的改質劑負
    荷、以氮氣作為脫附氣體可有效降低MEK反應生成BDO。證實以改質之活
    性碳進行溶劑回收與揮發性有機物控制,初期投資成本雖較高且操作費用
    較貴,但可大幅提升系統操作之安全性。此外,在提升沸石濃縮轉輪吸附
    大分子均三甲苯性能的研究方面,本研究發現單一種沸石基材吸附劑無法
    通用於分子尺寸不同的VOCs,對噴塗製程廢氣的混合性VOCs而言,本研
    究整合微孔洞(H-ZSM-5)與中孔洞(MCM-41)兩類沸石串連的工程解決方
    案。研究結果指出在含甲苯與均三甲苯兩種VOCs濃度各50 ppm的進流排
    氣,單獨使用H-ZSM-5-25沸石的貫穿時間為3.5 min,單獨使用MCM-41-AS
    沸石的貫穿時間為6.5 min,串聯兩類型沸石的貫穿時間明顯延長至20.5
    min,是單一沸石的3.2倍或5.9倍,實驗結果證實,串聯兩類型沸石組合可
    適用於同時含有小分子與大分子的噴塗製程VOCs之有效控制。


    Adsorption technologies have been widely used to control the emissions
    of volatile organic compounds (VOCs), and it is regarded as an effective way
    for VOCs removal. Especially, activated carbon and zeolite are commercially
    available for field application. However, they still have some limitations.
    Therefore, this study is motivated to improve the performance of adsorption
    systems of activated carbon and zeolite. First, methods for inhibiting
    butanedione (BDO) formation during activated carbon adsorption-desorption of
    methyl ethyl ketone (MEK) were investigated. In total, more than 28 types of
    modified activated carbons were extensively examined. The tests included five
    types of commercial activated carbons, nine kinds of modifiers, three kinds of
    solvents, and a variety of processing time and temperatures. Experimental
    results indicated that BDO formation from MEK oxidation could be greatly
    inhibited by suitable modifier, high modifier loading, and adopting N2 as
    desorption medium. For instance, BDO concentration in the test with raw
    activated carbon as adsorbent was 0.123%, and decreased to 0.0115% as
    modified activated carbon was applied, indicating that BDO concentration
    could be reduced by more than 10 times. Although the capital and running costs
    would increase by using modified activated carbon for solvent recovery, the
    operational safety can be greatly improved and it is economically feasible. On
    the other hand, zeolite adsorption rotor was studied for the enhancement of
    mesitylene adsorption. It is found that a rotor with single type of zeolite could
    not achieve good removal efficiency due to various VOCs molecular sizes in
    the exhausts of spray coating processes. This study hence proposed a possible
    engineering solution with the integration of both micropore (H-ZSM-5) and
    iii
    mesopore (MCM-41) zeolites. Experimental results indicated that the
    breakthrough time with H-ZSM-5-25/MCM-41-AS as adsorbent was greatly
    extended to 20.5 min. On the other hand, the breakthrough times were 3.5 and
    6.5 min, respectively, when H-ZSM-5 and MCM-41-AS were applied as
    adsorbent, respectively, for the gas stream containing 50 ppm toluene and
    mesitylene. Obviously, the breakthrough time of the combined zeolite
    developed can increase by 3.2 - 5.9 times if compared with individual zeolite. It
    is proved that combined H-ZSM-5-25/MCM-41-AS zeolite as adsorbent is
    suitable for simultaneous and effective removal of VOCs from spray coating
    exhaust.

    目錄 摘要 ........................................................................................................................... i Abstract ..................................................................................................................... ii 表目錄 ...................................................................................................................... V 第一章 前言............................................................................................................. 1 1.1 研究緣起 .............................................................................................. 1 1.2 研究目的 .............................................................................................. 3 第二章 文獻回顧 ..................................................................................................... 4 2.1 丁酮、均三甲苯及甲苯之物化特性、來源及危害 ............................. 7 2.2 揮發性有機物之控制技術 .................................................................. 11 2.3 國內重要之產業現況分析及VOCs 之排放 .......................................15 2.4 吸附與脫附理論 ..................................................................................38 2.5 影響吸附之因子 ..................................................................................41 2.6 活性碳於吸附VOCs 之應用...............................................................44 2.7 沸石於VOCs 吸附之應用 ..................................................................52 2.8 等溫吸附方程式 ..................................................................................59 2.9 吸附貫穿曲線 ......................................................................................64 第三章 研究方法 ....................................................................................................66 3.1 商用活性碳選用 ..................................................................................67 3.2 活性碳之改質方法 ..............................................................................68 3.3 活性碳吸脫附性能測試系統...............................................................70 3.4 活性碳吸脫附測試流程 ......................................................................71 3.5 活性碳吸附容量之計算 ......................................................................72 3.6 BDO 吸收液分析及檢量線 .................................................................73 3.7 活性碳表面官能基分析方法...............................................................73 II 3.8 沸石吸附實驗方法 ..............................................................................74 第四章 改質活性碳之吸附效能探討 .....................................................................77 4.1 活性碳孔徑特性與灰分含量之差異 ...................................................77 4.2 活性碳表面含氧官能基之差異及改質後活性碳之起燃點 ................79 4.3 未改質活性碳再生時之BDO 生成量 .................................................81 4.4 脫附溫度及表面含氧官能基對BDO 產生量之影響..........................83 4.5 改質劑負荷對BDO 產生量之影響 ....................................................84 4.6 活性碳含氧官能基差異對BDO 產生量之影響 .................................87 4.7 MEK/甲苯交替吸脫附對BDO 之影響 ...............................................89 4.8 脫附介質對BDO 之影響 ....................................................................90 4.9 活性碳改質成本分析與經濟效益評估 ...............................................93 第五章 沸石對均三甲苯之吸附效能探討 .............................................................95 5.1 沸石孔徑特性分析及其均三甲苯之吸附效能 ....................................95 5.2 沸石矽鋁比之影響與吸附均三甲苯等溫吸附方程式 ........................98 5.3 相對濕度對MCM-41 吸附均三甲苯之影響 .................................... 100 5.4 MCM-41-AS 沸石吸附均三甲苯之循環測試 ................................... 102 5.5 沸石孔洞大小對不同氣體分子尺寸之影響 ..................................... 104 第六章 結論與建議 .............................................................................................. 108 6.1 結論 ................................................................................................... 108 6.2 建議 ................................................................................................... 109 參考文獻 ............................................................................................................... 110 圖目錄 圖2.1 VOCs 逸散及反應途徑示意圖 ................................................................... 5 圖2.2 國內不同製程之總VOCs 排放佔比情形 ................................................... 6 圖2.4 PU 合成皮乾式製程: 轉塗法 ................................................................... 18 圖2.5 PU 合成皮乾式製程: 直接塗佈法 ........................................................... 19 圖2.6 PU 合成皮乾式製程操作流程 .................................................................. 19 圖2.7 PU 合成皮濕式製程:塗佈法 .................................................................. 20 圖2.8 PU 合成皮濕式製程: 含浸法 ................................................................... 20 圖2.9 PU 合成皮濕式製程操作流程 .................................................................. 21 圖2.10 某乾式PU 皮業製程之THC 排放檢測結果 ............................................ 21 圖2.11 國內某乾式PU 皮業製程之VOCs 排放種類及濃度 ............................... 22 圖2.12 三槽式固定床活性碳溶劑回收設備圖 ..................................................... 23 圖2.13 流體化床溶劑回收設備圖 ........................................................................ 24 圖2.14 三槽式固定床活性碳溶劑回收系統流程 ................................................. 24 圖2.15 正常活性炭顆粒與火災燃燒後之活性碳 ................................................. 27 圖2.16 金屬表面塗裝流程.................................................................................... 30 圖2.17 木材塗裝作業流程.................................................................................... 32 圖2.18 塑膠塗裝作業流程圖 ................................................................................ 33 圖2.19 蜂巢狀沸石吸附轉輪及卡匣 .................................................................... 37 圖2.20 沸石濃縮轉輪焚化系統流程示意圖 ......................................................... 37 圖2.21 吸附原理示意 ........................................................................................... 39 圖2.22 典型之活性碳吸脫附回收系統 ................................................................ 46 圖2.23 ZSM-5 沸石結構示意圖 ........................................................................... 55 圖2.24 六種型態之等溫吸附曲線示意圖 ............................................................ 61 圖2.25 吸附質傳帶示意圖.................................................................................... 65 IV 圖3.1 研究架構與流程 ......................................................................................... 67 圖3.2 活性碳改質性能實驗設置 .......................................................................... 71 圖3.3 活性碳表面官能基形式 .............................................................................. 74 圖3.4 均三甲苯之沸石吸脫附實驗設置 .............................................................. 76 圖4.1 不同活性碳之灰份組成比較 ...................................................................... 78 圖4.2 活性碳表面各種官能基之佔比與毫莫耳數 ............................................... 80 圖4.3 未改質活性碳再生時之BDO 生成量 ........................................................ 82 圖4.4 脫附溫度對BDO 產生量之影響 ................................................................ 84 圖4.5 改質劑負荷對BDO 產生量之影響 ............................................................ 85 圖4.6 原碳及改質活性碳之含氧官能基 .............................................................. 86 圖4.7 改質活性碳之BDO 生成量 ........................................................................ 87 圖4.8 MEK/甲苯交替吸脫附實驗結果 ................................................................ 88 圖4.9 以氮氣為脫附介質時對BDO 生成之影響................................................. 90 圖4.10 混合VOCs 條件下之吸脫附循環實驗結果 ............................................... 91 圖5.1 四種沸石之均三甲苯等溫吸附曲線........................................................... 97 圖5.2 五組均三甲苯濃度之MCM-41-AS 等溫吸附曲線 .................................... 99 圖5.3 MCM-41-AS 吸附均三甲苯之Freundlich 等溫方程式 ............................ 100 圖5.4 相對濕度對MCM-41-AS 沸石吸附均三甲苯之影響 .............................. 101 圖5.4 MCM-41-AS 沸石吸附均三甲苯之連續吸脫附測試結果 ....................... 103 圖5.5 HZSM-5 及MCM-41-AS 吸附甲苯及均三甲苯之吸附曲線 ................... 106 表目錄 表 2.1 全球每年人為排放及自然排放之VOCs 排放量 ........................................ 7 表 2.2 揮發性有機氣體處理技術之優缺點 .......................................................... 14 表 2.3 國內現有之VOCs 管制法規與相關行業 .................................................. 17 表 2.4 汽車製造業及PU 合成皮業法規管制內容 ............................................... 17 表 2.5 某乾式PU 皮業之製程排放THC 檢測結果 ............................................. 22 表 2.6 國內某乾式PU 皮業製程之VOCs 排放種類及濃度分析 ........................ 23 表 2.7 VOCs 控制技術之能源耗用及成本評估 ................................................... 25 表 2.8 VOCs 評估控制技術之成本效益比較 ....................................................... 26 表 2.9 各種表面塗裝製程之污染物 ..................................................................... 34 表 2.10 表面塗裝程序排放VOCs 特性 ................................................................. 35 表 2.11 物理吸附與化學吸附 ................................................................................. 40 表 2.12 影響吸附特性之因子 ................................................................................. 44 表 2.13 活性碳之特性 ............................................................................................ 46 表 2.14 一般活性碳結構內孔隙特徵 ..................................................................... 47 表 2.15 活性碳應用於VOCs 吸附之文獻彙整 ...................................................... 48 表 2.16 沸石應用於VOCs 吸附之文獻彙整 .......................................................... 56 表 2.17 常用之吸附劑之特性、規格及用途 .......................................................... 59 表 3.1 活性碳改質列表 ........................................................................................ 69 表 3.2 吸附實驗測試之MEK 與Toluene 性質 .................................................... 70 表 4.1 活性碳之孔洞特性及物性分析結果 .......................................................... 78 表 4.2 活性碳改質前、後之起燃點變化 ............................................................. 80 表 4.3 未改質活性碳再生時之BDO 平均生成量與相關特性 ............................ 82 表 4.4 改質劑負荷對BDO 產生量之影響 ........................................................... 86 表 4.5 活性碳改質成本分析 ................................................................................. 93 VI 表 5.1 沸石孔徑特性分析結果 ............................................................................. 96 表 5.2 四種沸石吸附均三甲苯的貫穿時間、飽和時間與飽和吸附量 ............... 97 表 5.3 相對濕度對MCM-41-AS 沸石吸附均三甲苯之影響 ............................. 101 表 5.4 MCM-41-AS 沸石吸附均三甲苯之連續十次吸脫附測試結果 ............... 103 表 5.5 MCM-41 系列沸石吸附VOCs 之比較 .................................................... 104 表 5.6 HZSM-5 及MCM-41-AS 吸附甲苯及均三甲苯之實驗結果 .................. 106 表 5.7 HZSM-5-25/MCM-41-AS 複合型沸石吸附甲苯及均三甲苯之效果 ...... 107

    Ciuparu D., Pfefferle, L., and Haller, G.L., Hydrothermal
    synthesis of MCM-41 using different ratios of colloidal and soluble silica,
    Microporous and Mesoporous Materials, 81, 191-200 2005.
    Armaroli, T., Simon, L.J., Digne, M., Montanari, T., Bevilacqua, M., Valtchev, V.,
    Patarin, J., and Busca, G., Effects of crystal size and Si/Al ratio on the surface
    properties of H-ZSM-5 zeolites, Applied Catalysis A: General, 306, 78-84
    2006.
    Blanco, C., Pesquera C., and González, F., Synthesis and characterization of
    MCM-41 with different Si/Al molar ratios and different silicon sources,
    Studies in Surface Science and Catalysis, 154, 432-438 2004.
    Blocki, S.W., Hydrophobic zeolite adsorption: A proven advancement in solvent
    separation technology, Environmental Progress, 12, 226-237 1993.
    Borkar, C., Tomar, D., and Gumma, S., Adsorption of dichloromethane on
    activated carbon, Journal of Chemical & Engineering Data, 55 1640-1644
    2010.
    Breck, D.W., Zeolite Molecular Sieves, John Wiley & Sons (1974).
    Brunauer, S., Emmet, P.H. and Teller, E., Adsorption of gas in multimolecular
    layers, Journal of the American Chemical Society, 60, 309-319 1938.
    Cardoso, B., Mestre, A.S., Carvalho, A.P., and Pires, J., Activated carbon derived
    from cork powder waste by KOH activation: Preparation, characterization, and
    VOCs adsorption, Industrial & Engineering Chemistry Research, 47,
    5841-5846 2008.
    Chandak, M.V., and Lin, Y.S., Hydrophobic zeolites as adsorbents for removal of
    volatile organic compounds from air, Environmental Technology, 19, 941-948
    1998.
    Chiang, H.L., Chiang, P.C., Chiang, Y.C., and Chang, E.E., Diffusivity of
    microporous carbon for benzene and methyl-ethyl ketone adsorption,
    Chemosphere, 38, 2733-2746 1999.
    ChristianTaty-Costodes, V., Fauduet, H., Porte, C., and Ho, Y., Removal of lead (II)
    ions from synthetic and real effluents using immobilized Pinus sylvestris
    sawdust: Adsorption on a fixed-bed column, Journal of Hazardous Materials,
    123, 135-144 2005.
    Cosseron, A.F., Daou, T.J., Tzanis, L., Nouali, H., Deroche, I., Coasne, B.,
    Tchamber, V., Adsorption of volatile organic compounds in pure silica CHA,
    ∗BEA, MFI and STT-type zeolites, Microporous and Mesoporous Materials,
    173,147-154 2013.
    Delage, F., Pré, P., Le, and Cloirec, P., Mass transfer and warming during
    adsorption of high concentrations of VOCs on an activated carbon bed:
    Experimental and theoretical analysis, Environmental Science & Technology,
    34, 4816-4821 2000.
    Dou, B.J., Hu, Q., Li, J.J., Qiao, S.Z., and Hao, Z.P., Adsorption performance of
    VOCs in ordered mesoporous silicas with different pore structures and surface
    chemistry, Journal of Hazardous Materials, 186, 1615-1624 2011.
    de Yuso, A.M., Izquierdo, M.T., Rubio, B., and Carrott, P.J.M., Adsorption of
    toluene and toluene-water vapor mixture on almond shell based activated
    carbons, Adsorption, 19, 1137-1148 2013.
    112
    Dyer, A., An introduction to zeolite molecular sieves, Australia: John Wiley &
    Sons, 1988.
    Farrell, J., Manspeaker, C., and Luo, J., Understanding competitive adsorption of
    water and trichloroethylene in a high-silica Y zeolite, Microporous and
    Mesoporous Materials, 59, 205-214 2003.
    Freundlich, H., Kolloidfällung und Adsorption, Angewandte Chemie, 20 749-750
    1907.
    Fuertes, A.B., Marban, G., and Nevskaia, D.M., Adsorption of volatile organic
    compounds by means of activated carbon fibre-based monoliths, Carbon, 41,
    87-96 2003.
    Fujita, E.M., Lu, Z., Sheetz, L., Harshield, G., Hayes, T., and Zielinska, B.,
    Hydrocarbon source apportionment in western Washington. Prepared for State
    of Washington. Dept. of Ecology, Lacy, WA, Desert Research Institute, Reno,
    NV (1997).
    Fujita, E.M., Watson, J.G., Chow, J.C., Robinson, N.F., Richards, L.W., and
    Kumar, N., Northern front range air quality study. Volume C: Source
    apportionment and simulation methods and evaluation. Prepared for Colorado
    State University, Cooperative Institute for Research in the Atmosphere, Ft.
    Collins, CO, Desert Research Institute, Reno, NV (1998).
    Gaca, P., Drzewiecka, M., Kaleta, W., Kozubek, H., and Nowińska, K., Catalytic
    degradation of polyethylene over mesoporous molecular sieve MCM-41
    modified with heteropoly compounds, Polish Journal of Environmental
    Studies, 17, 25-31 2008.
    Garcia-Martinez, J., and Li, K.H., Mesoporous zeolites: preparation,
    characterization and applications, Wiley-VCH Verlag GmbH and Co. KGaA,
    2015.
    Gen, L., and Ikuo, A., Application of activated carbon technology, Japan, 2002.
    Gregg, S.J., and Sing, K.S.W., Adsorption Surface Area and Porosity, 2nd ed.,
    Academic Press, London, 1982.
    Gupta, A., Gaur, V., and Verma, N., Breakthrough analysis for adsorption of
    sulfur-dioxide over zeolites, Chemical Engineering and Processing, 43, 9-22
    2004.
    Gupta, K.N., Rao, N.J., and Agarwa, G.K., Removal of toluene from nitrogen gas
    by adsorption in a fixed bed column: Experimental and theoretical
    breakthrough curves, International Journal of Chemical Engineering and
    Applications, 2, 359-365 2011.
    Hong, G.B., Ruan, R.T., and Chang, C.T., MCM-41 from spent glasses for volatile
    organic compounds treatment, Chemical Engineering Journal, 215-216,
    472-478 2013.
    Hu, X.J., Qiao, S.Z., Zhao, X.S., and Lu, G.Q., Adsorption study of benzene in
    ink-bottle-like MCM-41, Industrial & Engineering Chemistry Research, 40,
    862-867 2001.
    Huang, P.H., and Chen, S.H., Effect of moisture content, system pressure, and
    temperature on the adsorption of carbon dioxide in carbon nanotube and
    graphite composite structures using molecular dynamics simulations, Journal
    of Nanoscience and Nanotechnology, 16, 8654-8661 2016.
    Huang, H.F., Gu, Y.Y., Yin, C., Zhou, C.H., and Lu, H.F., The
    adsorption-desorption performance of volatile organic compounds (VOCs)
    114
    onto polymer resin and mesoporous molecular sieves, China Environmental
    Science, 32, 62-68 2012.
    Huang, L., Huang, Q.L., Xiao, H.N., and Eić, M., Effect of cationic template on
    the adsorption of aromatic compounds in MCM-41, Microporous and
    Mesoporous Materials, 98, 330-338 2007.
    Hung, C.T., Bai, H.L., and Karthik, M., Ordered mesoporous silica particles and
    Si-MCM-41 for the adsorption of acetone: a comparative study, Separation
    Science and Technology, 64, 265-272 2009.
    Huang, Z., Miao, H., Li, J.H., Wei, J.I., Kawi, S., and Lai, M.W.,
    Modifier-enhanced supercritical CO2 extraction of organic template from
    aluminosilicate MCM-41 materials: Effect of matrix Al/Si ratios and different
    modifiers, Separation and Purification Technology, 118, 170-178, 2013.
    Huang, Z.H., Kang, F., Liang, K.M., and Hao, J., Breakthrough of
    methyethylketone and benzene vapors in activated carbon fiber beds, Journal
    of Hazardous Materials, 98, 107-115 2003.
    Hussein, M.S., and Ahmed, M.J., Fixed bed and batch adsorption of benzene and
    toluene from aromatic hydrocarbons on 5A molecular sieve zeolite, Materials
    Chemistry and Physics, 181, 512-517 2016.
    Hussey, F., and Gupta, A., Removal of VOCs from industrial process exhaust with
    carbon and zeolite adsorbents, Proceeding of Air & Waste Management
    Association Meeting, 1996.
    Ichiura, H., Nozaki, M., Kitaoka, T., and Tanaka, H., Influence of uniformity of
    zeolite sheets prepared using a papermaking technique on VOC adsorptivity ,
    Advances in Environmental Research, 7, 975-979 2003.
    Ivanova, S., Pérez, A., Centeno, M.Á., Odriozola, J.A., New and future
    developments in catalysis, USA: Netherlands, 2013.
    Kalantarifard, A., Gon, J.G., and Yang, G.S., Formaldehyde adsorption into
    clinoptilolite zeolite modified with the addition of rich materials and
    desorption performance using microwave heating, Terrestrial, Atmospheric
    and Oceanic Sciences, 27, 865-875 2016.
    Katz, S., and Gray, D.G., The adsorption of hydrocarbons on cellophane: III. effect
    of relative humidity, Journal of Colloid and Interface Science, 82, 339-351
    1981.
    Keller, J.U., and Staudt, R., Gas Adsorption Equilibria, Springer, U.SA, 2005
    Khan, F.I., and Ghoshal, A.K., Removal of volatile organic compounds from
    polluted air, Journal of Loss Prevention in the Process Industries, 13, 527-545
    2000.
    Koppmann, R., Volatile organic compounds in the atmosphere, Blackwell
    Publishing Ltd , Wiley-Blackwell, 2007.
    Koppmann, R., Handbook of hydrocarbon and lipid microbiology, Germany:
    Springer, 2010.
    Kosslick, H., Lischke, G., Parlitz, B., Storek, W., and Fricke, R., Acidity and active
    sites of Al-MCM-41, Applied Catalysis A: General, 184, 49-60 1990.
    Li, L.Q., Song, J.F., Yao, X.L., Huang, G.J., Liu, Z., and Tang, L., Adsorption of
    volatile organic compounds on three activated carbon samples: Effect of pore
    structure, Journal of Central South University, 19, 3530-3539 2012.
    Lordgooei, M., Rood, M.J., and Massoud, R.A., Sorption of toxic chemical vapors
    in fixed bed adsorbers containing activated carbon fiber cloth and modeling of
    diffusivity and mass transfer, Air & Waste Management Association’s 91st
    116
    Annual Meeting & Exhibition, San Diego, California, 121–142, June 14–18
    1998.
    Li, L., Liu, S., and Liu, J., Surface modification of coconut shell based activated
    carbon for the improvement of hydrophobic VOC removal, Journal of
    Hazardous Materials, 192, 683-690 2011.
    Ma, C.M., and Ruan, R.T., Adsorption of toluene on mesoporous materials from
    waste solar panel as silica source, Applied Clay Science, 80-81, 196-201 2013.
    Mahmoudi, J., Lotfollahi, M.N., and Asl, A.H., Comparison of synthesized
    H-Al-MCM-41 with different Si/Al ratios for benzene reduction in gasoline
    with propylene, Journal of Industrial and Engineering Chemistry, 24, 113-120
    2015.
    Mitsuma, Y., Ota, Y., and Hirose, T., Performance of thermal swing honeycomb
    VOC concentrators, Journal of Chemical Engineering of Japan, 31, 482-484
    1998.
    Meléndez-Ortiz, H.I., Mercado-Silva, A., Garcia-Cerda, L.A., Castruita, G., and
    Perera-Mercado, Y.A., Hydrothermal synthesis of mesoporous silica MCM-41
    using commercial sodium silicate, Journal of the Mexican Chemical Society,
    57, 73-79 2013.
    Nguyen, C., Sonwane, C.G., Bhatia, S.K., and Do, D.D., Adsorption of benzene
    and ethanol on MCM-41 material, Langmuir, 14, 4950-49521998.
    Nien, K.C., Chang, F.T., and Chang, M.B., Adsorption-desorption characteristics
    of methyl ethyl ketone with modified activated carbon and inhibition of
    2,3-butanediol production, Jounal of Air & Waste Management Association,
    65, 1317-1326 2015.
    Nien, K.C., Chang, F.T., and Chang, M.B., Adsorption of mesitylene via
    mesoporous adsorbents, Journal of the Air & Waste Management Association,
    67, 1319-1327 2017.
    NIST Chemistry WebBook: https://www.nist.gov/ (2016).
    Oh, K.J., Park, D.W., Kim, S. S., and Park, S.W., Breakthrough data analysis of
    adsorption of volatile organic compounds on granular activated carbon,
    Korean Journal of Chemical Engineering, 27, 632-638 2010.
    Ohayon, D., Mao, R.L.V., Ciaravino, D., Hazel, H., Cochennec, A., and Rolland,
    N., Methods for pore size engineering in ZSM-5 zeolite, Applied Catalysis B:
    Environmental, 217, 241-251 2001.
    Post, J.G., and van Hooff, J.H.C., Acidity and activity of H-ZSM-5 measured with
    NH3 TPD and n-hexane cracking, Zeolites, 4, 9-14 1984.
    Popescu, M., Joly, J.P., Carre, J., and Danatoiu, C., Dynamical adsorption and
    temperature-programmed desorption of VOCs (toluene, butyl acetate and
    butanol) on activated carbons, Carbon, 41, 739-748 2001.
    Ramirez, D., Sullivan, P.D., Rood, M.J., and Hay, K.J., Equilibrium adsorption of
    phenol-, tire-, and coal-derived activated carbon for organic vapors, Journal of
    Environmental Engineering, 130, 231-241 2004.
    Rodríguez-González, L., Hermes, F., Bertmer, M., Rodríguez-Castellón, E.,
    Jiménez-López, A., and Simon U., The acid properties of H-ZSM-5 as studied
    by NH3-TPD and 27Al-MAS-NMR spectroscopy, Applied Catalysis A: General,
    328, 174-182 2007.
    Rodríguez-Mirasol, J., Bedia, J., and Cordero, T., Influence of water vapor on the
    adsorption of VOCs on lignin-based activated carbons, Separation Science and
    Technology, 40, 3113-3135 2005.
    118
    Ruhl, M.J., Recover VOCs via adsorption on activated carbon, Chemical
    Engineering Progress, July, 37-41 1993.
    Ruthven, D.M., Principles of adsorption and adsorption process, John Wiley &
    Sons, Inc., New York, 1984.
    Sepehrian, H., Fasihi, J., and Mahani, M.K., Adsorption behavior studies of picric
    acid on mesoporous MCM-41, Industrial & Engineering Chemistry Research,
    48, 6772-6775 2009.
    Shirazi, L., Jamshidi, E., and Ghasemi, M.R., The effect of Si/Al ratio of ZSM-5
    zeolite on its morphology, acidity and crystal size, Crystal Research and
    Technology, 43, 1300-1306 2008.
    Sivakumar, M., Yamamoto, Y., Amutharani, D., Tsujita, Y., Yoshimizu, H., and
    Kinoshita, T., Study on -form complex in a syndiotactic polystyrene/organic
    molecules system, 1-preferential complexing behavior of xylene isomers,
    Macromolecular Rapid Communications, 23, 77-79 2002.
    Shiau, C.H., Pan, K.L., Yu, S.J., Yan, S.Y., and Chang, M.B., Desorption of
    isopropyl alcohol from adsorbent with non-thermal plasma, Environmental
    Technology, 38, 2314-232 2017.
    Simon-Masseron, A., Marques, J.P., Lopes, J.M., Ribeiro, F.R., Gener, I., and
    Guisnet, M., Influence of the Si/Al ratio and crystal size on the acidity and
    activity of HBEA zeolites, Applied Catalysis A: General, 316, 75-82 2007.
    Souza, M.J.B., Lima, S.H., Araujo, S.H., and Pedrosa. M.G., Determination of the
    acidity of MCM-41 with different Si/Al ratios by the temperature programmed
    desorption of pyridine, Adsorption Science & Technology, 25, 751-756 2007.
    Stenzel, M.H., Remove organics by activated carbon adsorption, Chemical
    Engineering Progress, 89, 36-43 1993.
    Stoeckli, H.F., Kraehenbuehl, F., Ballerini, L., and Bernardini, S.D., Recent
    development in the Dubinin equation, Carbon, 27, 125-128 1989.
    Takeuchi, Y., Hayato, N., Miyata, S. A., and Harada, A., Adsorption of 1-butanol
    and p-xylene vapour and their mixtures with high silica zeolites, Separation
    Technology, 5, 23-24 1995.
    Takeuchi, M., Hidaka, M., and Anpo, M., Efficient removal of toluene and
    benzene in gas phase by the TiO2/Y-zeolite hybrid photocatalyst, Journal of
    Hazardous Materials, 237-238, 133-139 2012.
    Tseng, R.L., Physical and chemical properties and adsorption type of activated
    carbon prepared from plum kernels by NaOH activation, Journal of Hazardous
    Materials, 147, 1020-1027 2007.
    Wang, C.M., Chang, K.S., Chung, T.W., and Wu, H., Adsorption equilibria of
    aromatic compounds on activated carbon, silica gel, and 13X zeolite, Journal
    of Chemical & Engineering Data, 49, 527-531 2004.
    Wang, C.M., Chung, T.W., Huang, C.M., and Wu, H., Adsorption equilibria of
    acetate compounds on activated carbon, silica gel, and 13X zeolite, Journal of
    Chemical & Engineering Data, 50, 811-816 2005.
    Wang, Y., Sun, Y.Y., Lancelot, C., Lamonier, C., Morin, J.C., Revel, B., Delevoye,
    L., and Rives. A., Effect of post treatment on the local structure of hierarchical
    beta prepared by desilication and the catalytic performance in friedel–crafts
    alkylation, Microporous and Mesoporous Materials, 206, 2015 42–51.
    Wang, Y., Yang, D., Li, S., Chen, M., Guo, L., and Zhou, J., Ru/hierarchical
    HZSM-5 zeolite as efficient bi-functional adsorbent/catalyst for bulky
    aromatic VOCs elimination, Microporous and Mesoporous Materials, 258,
    17-25 2018.
    120
    Yamamoto, T., Endo, A., Ohmori, T., and Nakaiwa, M., Porous properties of
    carbon gel microspheres as adsorbents for gas separation, Carbon, 42,
    1671-1676 2004.
    Yang, K., Xue, F., Sun, Q., Yue, R.L., and Lin, H., Adsorption of volatile organic
    compounds by metal-organic frameworks MOF-177, Journal of
    Environmental Chemical Engineering 1, 713-718 2013.
    Yu, F.D., Luo, L.A., and Grevillot, G., Adsorption isotherms of VOCs onto an
    activated carbon monolith: Experimental measurement and correlation with
    different models, Journal of Chemical & Engineering Data, 47, 467-473 2002.
    Zaitan, H., Manero, M.H., Valdés, H., Application of high silica zeolite ZSM-5 in
    a hybrid treatment process based on sequential adsorption and ozonation for
    VOCs elimination, Journal of Environmental Sciences, 41, 59-68 2016.
    Zerbonia, R.A., Brockmann, C.M., and Peterson, P.R., Carbon bed fires and the
    use of carbon canisters for air emissions control on fixed-roof tanks, Journal of
    the Air & Waste Management Association, 51, 1617-1627 2001.
    沈克鵬、施志恆、張豐堂、陳見財、粘竺耕揮發性有機物廢氣減量及處
    理技術手冊,經濟部工業局,1994年。
    白曛綾、李谷蘭、楊泰辰、黃文賢、林育旨,園區半導體製造業廢氣處理及
    排放調查研究期末報告,2000年。
    白曛綾、賴慶智、林育旨、康育豪、李谷蘭、曾映棠、劉政彰、 陳建志、張
    國財、劉惠綺、楊德志,新竹科學園區半導體及光電製造業空氣污染防制
    設施績效提升輔導,2001年。
    白曛綾、盧重興、曾映棠、許世杰、張國財、林育旨、林家欣、 陳建志、洪
    錦德,新竹科學園區半導體及光電製造業空氣污染防制設施績效提升輔導
    II,2002。
    張豐堂,次世代面板廠揮發性有機氣體淨化設備的特性研究,清華大學工程
    與系統科學系博士論文,2005年。
    顏秀慧、鄭福田,沸石對甲苯與丁酮之吸附研究,第十三屆空氣污染控制技
    術研討會論文集,台北市,1996年。
    蔡文田,含揮發性有機物廢氣之活性碳吸附與觸媒焚化處理研究,國立台灣
    大學環境工程學研究所博士論文,1994年。
    行政院環保署,空污費申報系統,民國104年。
    行政院環保署,毒物及化學物質局資料,民國106年。
    林文川,製程VOCs廢氣之收集與處理,工業污染防制第110期,2009
    年。
    行政院環境保護署網站: https://www.epa.gov.tw/mp.asp?mp=epa.
    經濟部工業局, 工業減廢技術手冊-PU合成皮工業, 1997年。
    傑智環境科技股份有限公司, 內部公司相關資料。
    李立成, 活性炭蓄積熱起火案例分析, 2006年。
    周更生,行政院國家科學委員會,各種表面塗裝作業揮發性有機物減量技術
    調查評估計畫,1998年。
    朱信,國科會空污防制科研計畫: 固定污染源揮發性有機物排放減量技術及
    成效評估研究子計畫一:表面塗裝揮發性有機物之減量技術及成效評估,
    2003年。

    QR CODE
    :::