| 研究生: |
江俞萱 Yu-hsuan Chiang |
|---|---|
| 論文名稱: |
宜蘭三星清水地區現地應力與斷層再活動分析 In-situ Stress and Fault Reactivation Potential Analysis in Ilan Sanshing and Chingshui Area |
| 指導教授: |
洪日豪
Jih-hao Hung 張竝瑜 Ping-yu Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 現地應力 、滑移潛勢 、斷層再活動 、宜蘭三星 |
| 外文關鍵詞: | in-situ, slip tendency, fault reactivation, Ilan Sanshing |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要進行宜蘭地區斷層再活動性之評估工作。考慮在宜蘭三星地區若進行增強型地熱系統(EGS),灌注流體於地層中可造成孔隙液壓上升,因而作用在斷層面上的有效正應力將減少,導致斷層再活動之可能性增加。應力場資料來自三星地區結元井之鑽井資料,假設孔隙液壓為靜水壓梯度;以岩心密度積分求得現地的鉛直應力;由水力破裂試驗測得最小水平應力數值;以應力多邊形推估最大水平應力隨深度的變化,其上界值利用安德森臨界斷層摩擦理論求得;並利用清水IC21號井之井徑電測(Caliper log)判釋最大水平應力的方位。接著研究並蒐集震測剖面及地質剖面,利用GOCAD軟體建構宜蘭三星與清水地區地下地層及斷層的三維構造,再使用3DStress和Traptester軟體計算斷層面上各區塊因灌注流體引發重新滑動的潛勢(slip tendency, Ts & dilation tendency, Td)及臨界孔隙液壓差值(Pcp)。分析結果顯示宜蘭三星地區的應力梯度分別為鉛直應力21.6MPa/km,最小水平應力18.0MPa/km,最大水平應力之上界值根據臨界應力斷層摩擦理論(μ=0.6)求得34.2 MPa/km。依據井徑電測判釋的最大水平應力方位約為30°。假設斷層靜摩擦係數μ=0.6情況下,濁水斷層滑移潛勢最高,但低於0.6,所以在目前現地應力作用下屬於穩定狀態,擴張潛勢最高的斷層亦為濁水斷層。另評估各參數對斷層臨界孔隙液壓差之敏感度,影響最大的參數為最小水平應力。最後考量三星地區在不同應力機制下,以隨機參數取樣估算濁水斷層之臨界孔隙液壓差。若應力機制為正斷層系統,濁水斷層在滑動前所能承受臨界孔隙液壓差之最保守估計值為2.6MPa;若應力機制為走向滑移斷層系統,濁水斷層在滑動前所能承受臨界孔隙液壓差之最保守估計值為2.4MPa。
The aim of this study is to analyze the possibility of the fault reactivation in Sansing Area of Ilan. The scenario assumes the possible fluid injection activitis for Enhanced Geothermal System (EGS), which may generate high fluid pressure and trigger slip along fault planes. We determined the in-situ stress states with core logging data from the HongChaiLin(HCL) and IC21 wells,. We estimated the pore pressures from the hydrostatic pressure gradient (10.37MPa/km). The vertical stresses (SV) were calculated from core density logs of the HCL well. The gradient of the vertical stress is 21.63MPa/km. The minimum horizontal stress (Shmin) is measured with hydraulic fracture test, and its gradient is 18.01MPa/km. The maximum horizontal stress (SHmax) is estimated with stress polygon method, and its upper bound is estimated using Anderson faulting theory. The upper bound gradient of SHmax is 34.20 MPa/km. The orientation of the maximum horizontal stress is 30° from the Caliper logs of IC21 well. We also construct the 3-D geological structure model of Sansing and Chigshui area, and using the model for assessing the risk of fault reactivation with 3DStress and Traptester softwares. Under current in-situ stress state, Zhuosui fault has higher slip tendency than other faults. We also concluded that the Zhuosui fault has higher dilation tendency than others from the dialation analysis. In addition, The sensitivity analysis shows that the minimum horizontal stress is the main factor influence on the critical pressure perturbation (Pcp). The scenarios tests of fluid injection upon the Zhuosui fault show that the critical pressure perturbation allowed is 2.566MPa, assuming the normal faulting stress regime, and the critical pressure perturbation is 2.417MPa for strike-slip faulting stress states.
Anderson, E. M. (1951). The dynamics of faulting. Oliver and Boyd.
Bell, J. S. (1996). In situ stresses in sedimentary rocks (part 1): measurement techniques. Geoscience Canada, 23, 85-100.
Bell, J. S. (1996). In situ stresses in sedimentary rocks (part 2): applications of stress measurements. Geoscience Canada, 23, 135-153.
Byerlee, J. D. (1978). Friction of rocks. Pure and Applied Geophysics, 106, 615-629.
Chang, C. P., Angelier, J. and Huang, C.Y. (2000). Origin and evolution of a melange: the active plate boundary and suture zone of the Longitudinal Valley, Taiwan. Tectonophysics, 325, 43-62.
Finkbeiner, T., Zoback, M., Stump B. B., Flemings, P. B. (2001). Stress, pore pressure, and dynamically constrained hydrocarbon columns in the South Eugene Island 330 Field, Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 85, 1007-1031.
Ho, G.-R., P.-Y. Chang, W. Lo, C.-M. Liu, S.-R. Song. (2014). New evidence of regional geological structures inferred from reprocessing and resistivity data interpretation in the Chingshui-Sabshing-Hanchi area of southwestern Ilan county, NE Taiwan. Terrestrial, Atmospheric and Oceanic Science, 25(4), 491-504.
Hung, J. H. a. W., J. C. (2012). In-situ stress and fault reactivation associated with LNG injection in the Tiechanshan gas field, fold-thrust belt of Western Taiwan. Journal of Petroleum Science and Engineering, 96-97, 37-48.
Liu, C.-C. (1995). The Ilan plain and the southwestward extending Okinawa Trough. J.Geol. Soc. China, 38, 229-242.
Mardia, K. V. (1972). Statistics of directional data: probability and mathematical statistics. London( Academic Press), 1-357.
Moeck, I., Kwiatek, G. and Zimmermann, G. (2009). Slip tendency analysis,
fault reactivation potential and induced seismicity in a deep geothermal
reservoir. Journal of Structural Geology,, 31, 1174-1182.
Morris, A. P., Ferrill, D. A., Henderson, D. B. (1996). Slip-tendency analysis and fault reactvation. Geology Society of America, 24, 275-278.
Reinecker, J., Tingay, M., and Muller, B. (2003). Borehole breakout analysis from four-arm caliper logs. World Stress Map(Guidelines).
Suppe, J., Hu, C. T., Chen, Y. J. (1985). Present-day stress directions in western Taiwan inferred from borehole. Petroleum Geology of Taiwan, 21, 1-12.
Suppe, J. (1985). Principles of Structural Geology: Prentice-Hall.
Tingay, M., Reinecker, J., Muller, B. (2008). Borehole breakout and drilling-induced fracture analysis from image logs. World Stress Map, (Guidelines), 1-8.
Wiprut, D., & Zoback, M. D. (2001). Stress, borehole stability, and hydrocarbon leakage in the northern North Sea.
Wiprut, D. J. a. Z., M. D. (2002). Fault reactivation, leakage potential, and hydrocarbon column heights in the northern North Sea, Hydrocarbon seal quantification. NPF Special Publication, Elsevier, Amsterdam,, 11, 203-219.
Wu, Y.-M., C.-H. Chang, L. Zhao, J. B. H. Shyu, Y.-G. Chen, K. Sieh, and J.-P. Avouac. (2007). Seismic tomography of Taiwan: Improved constraints from a dense network of strong-motion stations. J. Geophys. Res. in press.
Wu, Y. M., Zhao, L., Chang, C. H., & Hsu, Y. J. (2008). Focal-mechanism determination in Taiwan by genetic algorithm. Bulletin of the Seismological Society of America, 98(2), 651-661.
Zoback, M. D., Barton, C. A., Brudy, M., Castillo, D. A., Finkbeiner, T., Grollimund, B. R., Moos, D. B., Peska, P., Ward, C. D., Wiprut, D. J. (2003). Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics & Mining Science, 40, 1049-1076.
Zoback, M. D. (2007). Reservoir Geomechanics. New York: Cambridge university press.
王乾盈,石瑞銓,利用震波測勘法調查地熱井井址之地下構造,第二期能
源國家型科技計畫地熱及天然氣水合物主軸中心103年地熱分項成果
發表會,2015。
石油探採,訓練叢書(第四冊) ,初版,中油股份有限公司,2003。
石政為,利用反射震測探討宜蘭平原之基盤深度及構造演化,國立中央大學地球物理研究所碩士論文,共110頁,2011年。
江新春,宜蘭平原之震測,礦業技術,第十四卷,第六期, 215-221頁,
1976年。
何春蓀,台灣地質概論─台灣地質圖說明書,經濟部中央地質調查所,共169 頁,1986。
汪蘭君,鐵砧山現地應力場與斷層再活動分析,國立中央大學應用地質研究所碩士論文,共 81頁,2010。
林啟文與林偉雄,三星圖幅暨說明書。經濟部中央地質調查所,圖幅第十五號。共 56 頁,1995。
林啟文與高銘健,蘇澳圖幅暨說明書。經濟部中央地質調查所,圖幅第十六號。共 47 頁,1997。
邱詠恬,利用 GPS觀測資料探討宜蘭平原現今地殼變形,國立台灣大學地質科學研究所碩士論文,共 90頁, 2008。
洪日豪、范振暉,「台灣竹苗地區地下應力狀態評估」,台灣中油公司探採研究所,2009。
孫天祥,台灣宜蘭清水地熱區之應力狀態研究,國立台灣師範大學地球科學研究所碩士論文,共66頁,2014。
張峻瑋,利用反射震測探討宜蘭平原南部之基盤深度及斷層分佈,國立中央大學地球物理研究所碩士論文,共104頁,2010。
許雅儒,由 GPS觀測資料探討宜蘭平原的伸張變形,國立中央大學地球
物理研究所碩士論文,共 110頁, 1999。
陳文山,宜蘭地區加強型地熱系統儲集層的技術開發與模擬研究(1/3),能源國家型科技計畫期末報告,2014。
陳洲生,陳建志,宜蘭紅柴林地區大地電磁法探勘及地熱系統的評
估,第二期能源國家型科技計畫地熱及天然氣水合物主軸中心103
年地熱分項成果發表會,2015。
游明芳,廖珙含,羅偉,宜蘭地區地質構造調查與地熱地質分析,
第二期能源國家型科技計畫地熱及天然氣水合物主軸中心103年地
熱分項成果發表會,2015。
黃信樺,台灣東北地區的地震構造:由碰撞末期轉變為隱沒拉張之構造特性,國立台灣大學地質科學研究所碩士論文,共 110頁,2007。
葉恩肇,洪日豪,王泰典等,宜蘭平原及鄰近地區孔內地球物理井測及導水裂隙與現地應力力學關係之研究,第二期能源國家型科技計畫地熱及天然氣水合物主軸中心103年地熱分項成果發表會,2015。
楊明宗,歐陽湘,柳志錫等,水力破壞現地應力量測及破壞準則探討,地工技術,99,第5-14 頁,2004。
董倫道,林蔚,李伯村,張碩芳,李錦發,台灣北部火成岩體及地質構造空中地球物理探測(2/2)。經濟部中央地質調查所報告,經濟部中央地質調查所,第 12 頁,2013。
鄧屬予,台灣第四紀大地構造,經濟部中央地質調查所特刊,第
18號,第1-24頁,2007。
鄧屬予、吳逸民、陳婷婷等,宜蘭地區地熱大地構造及地下地質,第二期能源國家型科技計畫地熱及天然氣水合物主軸中心103年地熱分項成果發表會,2015。
謝世雄、胡錦城,台灣重力與磁力之研究,台灣石油地質,第10號,第287頁,1972。
嚴珮綺,利用鑽井資料推估台灣新竹至台中地區的地下應力狀態,國立中央大學,碩士論文,2012。