跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王菘瑞
Sung-Jui Wang
論文名稱: 動態特徵選擇與學習於股價漲跌預測之研究
Dynamic Feature Selection and Learning in Stock Price Prediction
指導教授: 蔡志豐
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理學系
Department of Information Management
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 65
中文關鍵詞: 股價預測特徵選擇關鍵指標動態學習動態特徵選擇與學習
外文關鍵詞: Stock Price Prediction, Feature Selection, Key Metrics, Dynamic Learning, Dynamic Feature Selection and Learning
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大多數人在進行股票交易的時候,經常會運用一些指標做為決策參考,而且習慣觀察相同的類型,再根據當中的變化決定買進或賣出;但有些時候會發生判斷失靈的狀況,也就是說某些時候在系統性的因素外,指標與股價走勢會突然偏離正常的理解,這些背離的情況造成了預測失準及投資損失。本研究認為股價在各波段中應該隱藏著不同的關鍵指標,相同的指標在不同時間具有不同程度的權重,這樣的關係主導著股價變化,所以若能各波段中找出代表的關鍵指標,再利用動態的方式進行訓練或許能讓模型更接近真實。因此本研究提出「動態特徵選擇與學習 (Dynamic Feature Selection and Learning, DFSL)」方法。利用動態的方式找出各波段的關鍵指標,再動態的對各波段進行訓練。根據本研究實驗結果得到結果:DFSL 在預測未來股價漲跌的正確率優於靜態特徵選擇與學習方式。


    Most people often use some metrics as a reference when making stock transactions, and they are accustomed to observing the same type, and then decide to buy or sell according to the changes in it. But sometimes there will be a situation of judgment failure, that is to say, in some cases, outside of non-systematic factors, the trend of metrics and stock prices will suddenly deviate from normal understanding. These deviations have caused misprediction and investment losses. This study believes that different key metrics should be hidden in the stock price in each band. The same indicator has different degrees of weight and meaning at different times. This relationship dominates the change in the stock price. So if we can find the representative key metrics in each band, and then use dynamic training to make the model closer to the real. Therefore, this paper proposes a method of “Dynamic Feature Selection and Learning (DFSL)”. Use a dynamic method to find the key metrics of each band, and then dynamically train each band. According to the experimental results of this research, the result is that DFSL is better than static feature selection and learning methods in predicting future stock price changes.

    摘要 i Abstract ii 誌謝 iii 目錄 v 圖目錄 vi 表目錄 vii 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 2 第三節 研究目的 5 第二章 文獻探討 7 第一節 道氏理論 7 第二節 波浪理論 10 第三節 股價指標 11 第四節 支援向量機 15 第五節 分類和迴歸樹 17 第六節 特徵選擇 18 第三章 研究方法 19 第一節 研究設計 19 第二節 實驗流程 22 第四章 實驗結果 31 第一節 指標選選結果 31 第二節 指標驗證結果 34 第三節 動態特徵選擇 40 第四節 動態特徵選擇與學習 42 第五節 測試驗證 47 第五章 結論與展望 50 第一節 研究結論 50 第二節 應用建議 51 第三節 未來展望 52 參考文獻 53

    Appel, G., & Hitschler, W. F. (1980). Stock market trading systems: Irwin Professional Pub.
    Bellman, R. (1966). Dynamic programming. Science, 153(3731), 34-37.
    Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., & Lang, M. (2020). Benchmark for filter methods for feature selection in high-dimensional classification data. Computational Statistics & Data Analysis, 143, 106839.
    Breiman, L. (2017). Classification and regression trees: Routledge.
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
    Donchian, R. (1974). Donchian 5-and 20-Day Moving Averages,". Commodities Magazine.
    Frost, A. J., Prechter, R. R., & Collins, C. J. (1999). Elliott wave principle: key to market behavior: Wiley.
    Gartley, H. M. (1935). Profits in the stock market: Health Research Books.
    Granville, J. E. (1963). New key to stock market profits: Prentice-Hall.
    Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182.
    Hurst, J. M. (1970). The Profit Magic of Stock Transaction Timing: Prentice-Hall.
    Kittler, J. (1978). Feature set search algorithms. Pattern recognition and signal processing.
    Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial intelligence, 97(1-2), 273-324.
    Lane, G. C., & Lane, C. (1984). Getting Started With Stochastics. In Technical Analysis of Stocks and Commodities.
    Lanzi, P. L. (1997). Fast feature selection with genetic algorithms: a filter approach. Paper presented at the Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC'97).
    Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Coletta, A., Molter, C., . . . Nowe, A. (2012). A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(4), 1106-1119.
    Liu, H., & Motoda, H. (2007). Computational methods of feature selection: CRC Press.
    Metghalchi, M., Chang, Y.-H., & Garza-Gomez, X. (2012). Technical analysis of the Taiwanese stock market. International Journal of Economics and Finance, 4(1), 90-102.
    Park, C.-H., & Irwin, S. H. Report 2004-04: The Profitability of Technical Analysis: A Review.
    Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector machines.
    Rhea, R. (2013). The Dow Theory: BN Publishing.
    Seng-cho, T. C., Hsu, H.-j., Yang, C.-c., & Lai, F. (1997). A stock selection DSS combining AI and technical analysis. Annals of Operations Research, 75, 335-353.
    Teixeira, L. A., & De Oliveira, A. L. I. (2010). A method for automatic stock trading combining technical analysis and nearest neighbor classification. Expert systems with applications, 37(10), 6885-6890.
    Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.
    Vaga, T. (1994). Profiting from chaos: using chaos theory for market timing, stock selection, and option valuation: Tonis Vaga.
    Vapnik, V. (2013). The nature of statistical learning theory: Springer science & business media.
    Vapnik, V., Golowich, S. E., & Smola, A. J. (1997). Support vector method for function approximation, regression estimation and signal processing. Paper presented at the Advances in neural information processing systems.
    Weckman, G. R., Lakshminarayanan, S., Marvel, J. H., & Snow, A. (2008). An integrated stock market forecasting model using neural networks. International Journal of Business Forecasting and Marketing Intelligence, 1(1), 30-49.
    Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., & Vapnik, V. (2001). Feature selection for SVMs. Paper presented at the Advances in neural information processing systems.
    Wilder, J. W. (1978). New concepts in technical trading systems: Trend Research.
    Williams, L. R. (1979). How I Made One Million Dollars... Last Year... Trading Commodities: Windsor Books.
    Wong, W.-K., Manzur, M., & Chew, B.-K. (2003). How rewarding is technical analysis? Evidence from Singapore stock market. Applied Financial Economics, 13(7), 543-551.
    Zheng, Y., & Kwoh, C. K. (2011). A feature subset selection method based on high-dimensional mutual information. Entropy, 13(4), 860-901.
    艾祖鞍. (2018). 道氏理論於台股指數之應用.
    杜金龍. (2006). 最新技術指標在臺灣股市應用的訣竅: 財訊出版.
    林泓遠. (2001). 混沌理論在股價上的實證研究. 撰者,
    洪若信, & 陳安斌. (2008). 金融工程學行為實證之研究-以艾略特波浪理論隱含波浪行為知識的發現為例.
    陳東. (2019). 道氏理論: 新文創文化事業有限公司.
    陳儒琦, & 陳安斌. (2010). 具艾略特波浪特徵之股市趨勢研究.

    QR CODE
    :::