| 研究生: |
王俐涵 Li-han Wang |
|---|---|
| 論文名稱: |
以游離及固定化酵素促進氯酚化合物偶合反應之研究 Oxidative coupling of chlorophenol catalyzed by isolated and immobilized enzymes |
| 指導教授: | 李俊福 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 酵素固定化 、海藻酸鈉 、幾丁聚醣 、氯酚偶合 |
| 外文關鍵詞: | immobilized enzyme, sodium alginate, chitosan, chlorophenol coupling |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氯酚類化合物常見之處理方式有物理、化學、生物等,其中生物處理方法係利用微生物酵素去除氯酚被認為是對環境較為友善。本研究跳脫生物處理必需將污染物予以降解或被吸收移除的傳統思維,主要藉助微生物酵素催化氯酚產生氧化偶合反應以合成巨大、環境穩定且不具生物利用性之聚合物。為克服游離酵素之不穩定性和易受環境條件影響,選取廉價、易獲得之海藻酸鈉及幾丁聚醣製備固定化酵素並探討其活性影響條件及應用於催化氯酚偶合反應。
研究結果發現海藻酸鈉及幾丁聚醣固定化條件中利用海藻酸鈉濃度2%及氯化鈣濃度為0.1M;戊二醛濃度1%及酵素鍵結時間12小時所固定之酵素有最佳活性。不同pH值及溫度的活性測定,游離及海藻酸鈉固定化酵素之最佳pH值皆為4,幾丁聚醣固定化酵素則以pH3有最高的活性。游離及固定化酵素在20℃~50℃間有最大活性且差異不大,但固定化酵素之熱穩定性及儲存穩定性皆較游離酵素佳。
氯酚偶合實驗中,酵素添加量越多、反應時間越長、過氧化氫添加量越少,酵素可催化氯酚偶合產生新物質且偶合產物量也越多。固定化酵素能重複催化偶合氯酚,固定載體上之酵素活性顯示海藻酸鈉大於幾丁聚醣,但幾丁聚醣催化偶合效果則較穩定。酵素應用於不同溫度及pH值條件下偶合氯酚,固定化酵素在溫度20℃至60℃催化偶合效果較游離酵素穩定,且較能忍受高pH值的變異。
In this study, chlorophenol removal by enzyme was carried out. Oxidative coupling of chlorophenol was catalyzed by enzyme to form eco-friendly polymer. The enzyme was immobilized by sodium alginate and chitosan for the convenience of experimental design.
The optimal activity of the immobilized enzyme was found when the concentrations of the sodium alginate, calcium chloride, and flutaraldehyde were 2%, 0.1 M, and 1%, respectively, with 12 hours of immobilization. The optimal acidity for the mobilized enzyme and the one immobilized by sodium alginate was found at pH 4; optimal acidity of the enzyme immobilized by chitosan was found at pH 3. Both the mobilized and the immobilized enzymes had the optimal activity between 20 to 50°C. However, the immobilized enzyme possened better thermal stability and life time.
In the oxidative coupling, there was a positive correlation between the enzyme amount and the yield as well between the reaction time and the yield; a negative correlation was found between amount of hydrogen peroxide and the yield. Enzyme immobilized by sodium alginate was more active than that of immobilized by chitosan, but the coupling was more stable with the chitosan-immobilized enzyme. Between 20 to 60°C, the coupling of chlorophenol by the immobilized enzyme was more stable than the coupling by the mobilized one. Higher coupling yield was found with lower acidity.
1. Perry R. H.;Green D. W.,Perry’s Chemical Engineers’ Handbook,,7thed,McGraw-Hill,1997
2. Boyd SA;Shelton, DR.,“Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge.”,Appl. Environ. Microbial.,Vol. 272-277.,1984
3. Eckenfelder,W. W.,”Industrial water pollution control, 2nd edition”,McGraw-Hall press, Inc.,1989
4. Calace, N.;Nardi, E.;Petronio, B. M.;Pietroletti, M.,“Adsorption of phenols by papermill sludges.”,Environ. pollut.,118:315-519.,2002
5. Klibanov, A.M.;Tu, T.;Scott, K. P.,“Peroxidase-catalyzed removal of phenols from coal-conversion waste waters.”,Science,221:259-261.,1983
6. Yang, P.Y.;See, T.S.,“Packed entrapped mixed microbial cell process for removal of phenol and its compounds.”,Journal of Environmental Science and Health - Part A Environmental Science and Engineering, vol. 26, no. 8, pp. 1491-1512.,1991
7. Naruyoshi Mita;Shin-ichiro Tawaki;Hiroshi Uyama;Shiro Kobayashi,“Laccase-catalyzed oxidative polymerization of phenols.” ,Macromol. Biosci.,3, 253–257.,2003
8. Nicell, J. A.;Bewtra, J. K.;Taylor, K. E.;Biswas, N.;St Pieerre, C.,“Enzyme catalyzed polymerization and precipitation of aromatic compounds from wastewater”,Wat. Sci. Tech.,25: 157-164.,1992
9. A.A. Leontievsky;N.M. Myasoedova;B.P. Baskunov;L.A. Golovleva;C. Bucke;C.S. Evans.,“Transformation of 2,4,6-trichlorophenol by free and immobilized fungal laccase.”,Appl Microbiol Biotechnol ,57:85–91.,2001
10. 中華民國環境工程學會,「環境微生物」,1999
11. 陳國誠,「酵素工程學」,藝軒出版社,1992
12. Carlo Galli;Patrizia Gentili.,“Chemical messengers: mediated oxidations with the enzyme laccasey.”,J. Phys. Org. Chem.17: 973–977.,2004
13. Claus, H.,“Laccases: structure, reactions, distribution.”,Micron.,35, 93-96.,2004
14. Torres, E.;Bustos-Jaimes, I.;LeBorgne, S.,”Potential use of oxidative enzymes for the detoxification of organic pollutants.”,Appl. Catal. B Environ., 46,1–15.,2003
15. Bourbonnais, R.;Paice, M. G.,”Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation.”,FEBS Lett.,267,99–102.,1990
16. Muheim, A.;Fiechter, A.;Harvey, P. J.;Schoemaker, H. E.,”On the mechanism of oxidation of non-phenolic lignin model compounds by the laccase–ABTS couple.”,Holzforschung,46,121–126.,1992
17. Katriina Matilainena;Tiina Hamalainenb;Anne Savolainena;Thea Sipilainen-Malma;Jouko Peltonenb;Tomi Erhoa;Maria Smolandera., “Performance and penetration of laccase and ABTS inks on various printing substrates.”,Colloids and Surfaces B: Biointerfaces 90 119– 128.,2012
18. Sariaslani, F. S.;Beale, J. M. Jr. ;Rosazza, P.,”Oxidation of rotenone by polyporus anceps laccase.”,J.Nat. Prod.,47, 692–697.,1984
19. Kawai, S.;Umezawa, T.;Higuchi, T.,“Oxidation of methoxylated benzyl alcohols by laccase of coriolus versicolor in the presence of syringaldehyde.”,Wood Res.,76,10–16.,1989
20. Karen, E.;Gerhardt, X.D.;Huang, B.R.;Glick, B. M.;Greenberg., “Phytoremediation and rhizoremediation of organic soil contaminants:Potential and challenges.”,Plant Science,176,20–30,2009
21. Urán, N.;Esposito, E.,“Potential applications of oxidative enzymes andphenoloxidase-likecompounds in wastewater and soil treatment: a review.”,Environmental 28,83–99,2000
22. Guha, S.;Jaffe, P. R.,“Biodegradation hydrophobic compounds partitioned into the micellar phase of nonionic surfactants.”,Environ. Sci. Technol.,30, pp.1382-1391,1996
23. 陳國誠,「生物固定化技術與產業應用」,茂昌圖書有限公司
24. Nishioka, Y.;Kyotani, S.;Okamra, Y.;Ito, K.,“Release characteristics of cisplatin chitosan microsperes and effects of containing chitin.”,Chem.Pharm. Bull 38:2871-2873.,1990
25. Grant, G. T.;Morris, E. R.;Rees, D. A.;Smith, P. J.;Thom, D., “Biological interactions between polysaccharides anddivalent cations. Egg-box model.”,FEBS Lett 32:195-198.,1973
26. Rogalski J.;Dawidowicz A.;Józwik E.;Leonowicz A.,Journal of Molecular catalysis B:enzymatic 6, pp.29-39,1999
27. Leonowicz, A.;Sarkar, J. M.;Bollag, J.M.,“Improvement in stabilty of an immobilized fungal laccase.”,Appl. Micobiol. Biotechnol.,29, pp.129-135,1988
28. Sarkar, J. M.;Bollag J. M.,“Inhibitory effect of humic and fulvic acids on oxidoreductases as measured by the coupling of 2,4-dichlorophenol to humic substances.”,Sci. Total Environ.,62, pp.367-377,1987
29. Pointing S.B.,“Feasibility of bioremediation by white-rot fungi.”, Appl. Microbiol .Biotechnol. 57,pp.20-33,2001
30. Gianfreda, L.;Bollag, J.M.,“Effect of soils on the behavior of immobilized enzymes.” ,Soil Sci. Soc. Am. J.,58,pp.672-1681, 1999
31. Bollag, J.M.,“Decontaminating soil with enzyme:An in situ method using phenolic and anilinic compounds.”,Environ. Sci. Technol.,26:pp.1876-1881,1992
32. Hofrichter M.;Ziegenhagen D.;Sorge S.;Ullrich R.;Bublitz F.; Fritsche W.,“Degradation of lignite (low-rank coal) by ligninolytic basidiomycetes and their manganese peroxidase system.”,Appl. Microbiol. Biotechnol. 52,pp.78-84,1999d
33. Patrick J.C.;Michiel J.k.;Jim A. F.;Alan D. W.,“Oxidation of anthracene and benzo[a]pyrene by laccase from Trametes versicolor.”, Appl. And Environ. Micro., pp4563-4567,1996
34. Eric Guibal,”Interactions of metal ions with chitosan-based sorbents: A review.”,Separation and Purification Technology 38 43–74,2004
35. Glaser, C.Beiträge zur Kenntniss des Acetenylbenzols European journal of inorganic chemistry,2(1),422-424,1869
36. Bohlmann, F.;Schönowsky, H.;Inhoffen, E.;Grau, G., “Polyacetylenverbindungen, LII. Uber den mechanismus der oxydativen dimerisierung von acetylenverbindungen”,European journal of inorganic chemistry.,97(3),794-800.,1901
37. Smith, M. B.;March, J.,“Reactions, mechanisms, and structure” ,March's Advanced Organic Chemistry.,2001
38. Gomberg, M.;Bachmann, W. E.,“The synthesis of biaryl compounds by means of the diazo reaction”,Journal of the American Chemical Society.,46 (10),2339–2343,1924
39. Gomberg, M.;Bachmann, W. E.,p-BROMOBIPHENYL,Organic Syntheses.42,2339–2343,1941
40. Chodkiewicz, W. Ann. Chim. Paris.,2, 819–869,1957
41. Heck, R. F.;Nolley, J. P.,“Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides”,J. Org. Chem.,37 (14),2320–2322,1972
42. Mizoroki, T.;Mori, K.;Ozaki, A.,“Arylation of olefin with aryl iodide catalyzed by palladium”,Bulletin of the Chemical Society of Japan,44(2),581-581,1972
43. Miyaura, N.;Suzuki, A.,“Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst”,J. Chem. Soc.,Chem. Commun.,(19), 866-867,1979
44. Miyaura, N.;Yamada, K. and Suzuki ,”A Tetrahedron.”Lett.,866,1979
45. Friedel, C.;Crafts, J. M.;Compt. Rend.,“Comptes rendus hebdomadaires des séances de l'Académie des sciences / publiés... par MM. les secrétaires perpétuels”,1392&1450,1877
46. Uyama H;Kurioka H;Kaneko I;Kobayashi S.,“Synthesis of a new family of phenol by resin by enzymatic oxidative polymerization.”,Chem Lett 423.,1994
47. Ryohei Ikeda'.;Hozumi Tanaka;Hiroshi Uyama;Shiro Kobayashi,”Laccase-catalyzed polymerization of acrylamide.” Macromol. Rapid Comrnran. 19,423425 ,1998
48. Asgard Schultz;Ulrike Jonas;Elke Hammer; Frieder Schauer,“Dehalogenation of chlorinated hydroxybiphenyls by fungal Laccase.”,Applied and Environmental Microbiology Sept.,p. 4377–4381,2001
49. Kumarasamy Murugesan;Yoon-Young Chang;Young-Mo Kim; Jong-Rok Jeon;Eun-Ju Kim;Yoon-Seok Chang,“Enhanced transformation of triclosan by laccase in the presence of redox mediators.” ,water research 44,298– 308,2001
50. Maija-Liisa Mattinen1;Kristiina Kruus1;Johanna Buchert;Jacob H. Nielsen;Henrik J. ;Andersen;Charlotte L. ;Steffensen, “Laccase-catalyzed polymerization of tyrosine-containing peptides.”, FEBS J. ,Jul,272(14):3640-50.,2005
51. Anja Bodtke;Wolf-Diethard Pfeiffer;Norbert Ahrensb;Peter Langerc,“Horseradish peroxidase (HRP) catalyzed oxidative coupling reactions using aqueous hydrogen peroxide: an environmentally benign procedure for the synthesis of azine pigments”,Tetrahedron 61 10926–10929,2005
52. Leonardo Setti;Sara Scali;Igor Degli Angeli;Pier Giorgio Pifferi, “Horseradish peroxidase-catalyzed oxidative coupling of 3-methyl 2-benzothiazolinone hydrazine and methoxyphenols”,Enzyme and Microbial Technology 22:656–661,1998
53. Baesjou PJ;Driessen WL;Challa G;Reedijk J.,“Ab initio calculation on 2,6-dimethylphenoland 4-(2,6-dimethylphenoxy)-2, 6-dimethylphenol. Evidence of an important role for the phenoxonium cation in the copper-catalyzed oxidative phenol coupling reaction.”,J Am Chem Soc,119:12590.,1997
54. Jerzy Dec;Jean-Marc Bollag,“Dehalogenation of chlorinated phenols during oxidative coupling.”,Environ. Sci. Technol.,28, 484-490,1994