| 研究生: |
翁昶生 chang-sheng weng |
|---|---|
| 論文名稱: |
圓錐平板型生物反應器脈動式二次流場研究 Secondary pulsatile flow in a Cone-plate bioreactor |
| 指導教授: |
鍾志昂
Chih-Ang Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 生物反應器 、圓錐平板裝置 、二次流 |
| 外文關鍵詞: | secondary flo, bioreactor, cone-plate instrument |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
生物反應器可以提供一個體外的細胞培養生長環境,以觀察反應器所提供的機械性刺激對細胞的影響。而在各種生物反應器中,圓錐平板型可在同一裝置中提供層流至紊流型式的剪切力環境,因此可用來模擬血液流動對血管內皮細胞造成的流體剪切力,研究剪切力對血管內皮細胞生長的影響。
本篇研究利用微擾法對速度及壓力進行雙重展開,求其流場型態及剪應力大小的公式,分析圓錐旋轉速度與變動頻率對流場型態與剪應力的影響。並比較轉動頻率對準靜態所估算的剪切力的影響,及雷諾數對平板上剪切力分佈的影響,以期能將結果應用於生物科技上。
Abstract
A bioreactor can provide an environment for cultivating cells in vitro, so researchers have been using different bioreactors to observe the corresponding cellular responses to the mechanical stimulus. Among various kinds of bioreactors, cone-plate instrument has been used to provide the fluid shear stress from laminar to turbulent flow, which may simulate pulsatile shear stress encountered by the endothelial cells in the arterial circulation.
Using the cone-plate instrument as the bioreactor, we analyze the stress field induced by periodically rotating the cone on the plate. The flow field is investigated by expanding the Navier-stokes and continuity equations with two nondimensional parameters, the Reynolds number (accounting significantly for the rotation speed) and the square of Womersley number (accounting significantly for the rotation frequency). We find the secondary flow and the shear stress on the plate are seriously influenced by the periodic motion of the cone. When the value of Womersley number increases, the quasi-steady solution of shear stress is no longer suitable.
References
【1】 Brown, T. D., 2000, Techniques for mechanical stimulation of cells in vitro:a review. Journal of Biomechanics. 33, 3-14.
【2】 Niklason, L.E., Gao, J., Abbott, W.M., Hirschi, K.K., Houser, S., Marini, R. & Langer, R. 1999, Functional Arteries Grown in Vitro, Science, Vol. 284, 489-493.
【3】 Mooney, M. & Ewart, R. H., 1934, The conicylindrical viscometer. Physis, 5, 350-354.
【4】 Cox, D. B., 1962, Radial flow in the cone-plate viscometer. Nature, 193,670.
【5】 Pelech, I. & Shapiro, A. H., 1967, Flexible disk rotating on a gas film next to a wall. Trans. ASME E: J. Appl. Mech. 31, 577-584.
【6】 Walters, K. & Waters, N. D., 1966, Polymer systems, deformation and flow. In Proc. Brit. Soc. Rheol. (ed. R. E. Wetton & R. W. Whorlow). Macmmillan.
【7】 Cheng, D. C.-H., 1968, The effect of secondary flow on the viscosity measurement using a cone-and-plate viscometers. Chem. Engng. Sci. 23, 895-899.
【8】 Fewell, M. E. & Hellum, J. D., 1997, The secondary flow of Newtonian fluids in cone-and-plate viscometers. Trans. Soc. Rheol. 21,535-565.
【9】 Dewey, C. F., Bussolari, S. R., Gimbrone, M. A.& Davies, P. F., 1981, The dynamic response of vascular endothelial cells to fluid shear stres. J. Biomech. Eng. 103, 177-185.
【10】 Bussolari, S. R., Dewey, C. F. & Gimbrone, M. A.,1982, Apparatus for subjectingliving cells to fluid shear stress. Rev. Sci. Instrum. 53(12), 1851-1854.
【11】 Sdougos, H. P., Bussolari, S. R. & Dewey, C. F., 1984, Secondary flow and turbulence in a cone-and-plate device. J. Fluid Mech. 138, 379-404.
【12】 P. Chaturani and S. Narasimman, 1990, Flow of power-law fluids in cone-plate viscometer. Acta Mechanica 82,197-211.
【13】 Olagunju, D. O. & Cook, L. P., 1993, Secondary flow in cone and plate flow of an Oldroyd-B fluid. J. Non-Newtonian Fluid Mech. 46, 29-47.
【14】 McKinley, G. H., Oztekin, A., Byars, J. A. & Brown, R. A., 1995, Self-similar instabilities in elastic flows between a cone and a plate. J. Fluid Mech. 285, 123-164.
【15】 Brett R. Blackman, Guillermo G.C., Michael A. Gimbrone, Jr., 2002, A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J. Biomech. Eng. 124, 397-406.
【16】 White, F. M., 1991, Viscous Fluid Flow, Second Edition, 314-318.
【17】 Mazumdar, J. N., 1992, Biofluid Mechanics, 54.