跳到主要內容

簡易檢索 / 詳目顯示

研究生: 杜應興
Ying-Hsing Tu
論文名稱: 衝擊荷重及呆荷重作用下彈性孔洞的動態反應
Dynamical Response of Void in a Neo-Hookean Sphere under Implusive Load and Dead Load
指導教授: 李顯智
Hin-Chi Lei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 88
中文關鍵詞: 材料強度衰減孔洞擴張橡膠材料
外文關鍵詞: Rubber, void growth, strength degradation
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討橡膠材料中孔洞的動態擴張。橡膠材料在很多方面都有不少應用,如土木工程的建築物隔震器、機械方面的輪胎等等都有使用橡膠材料。本文採用的橡膠材料模型為新虎克材料模型。當施加的外力到達材料的臨界荷重時,橡膠材料孔洞會有不穩定擴張,可能會造成橡膠材料的局部分子結構破壞,而導致橡膠材料整體強度衰減,所以研究橡膠材料中孔洞動態擴張的行為,可提供研究橡膠材料強度衰減的學理根據。本文探討新虎克材料的空心圓球在衝擊荷重和呆荷重作用下其彈性孔洞的振動型態以及討論外力強度、速率對孔洞振動的影響。


    This thesis studies with the dynamical behavior of voids in rubbers. Rubber materials have been used in many areas, such as building isolation and wheel tires. When loadings reaches some critical value, the dynamical behavior of the voids in rubbers will change. We will focus on the unstable growth of the voids under implusive load and dead load. The patterns of vibration and maximum deformation of the void are analyzied by adjusting the intensity and speed of the loadings applied on the outer boundary of the rubber sphere.

    目錄 內容 頁次 摘要i Abstractii 誌謝iii 目錄iv 圖目錄v 表目錄ix 第一章 緒論1 第二章 基礎理論2 2.1推導Neo-Hookean運動方程2 2.2孔洞的運動方程以及推導4 2.3 Micro-void的運動方程式推導6 第三章 呆荷重對孔洞之影響8 3.1突然施加呆荷重對孔洞的影響8 3.2線性遞增呆荷重對孔洞的影響10 3.3階梯狀呆荷重對孔洞的影響 17 3.4 Micro-void的分析18 第四章 衝擊荷重對孔洞的影響 52 4.1作用時間對位移放大比值影響52 4.2孔洞和荷重對放大比值的影響58 第五章 結論84 第六章 文獻回顧86

    參考文獻
    1. F.A.McClintock, A criterion for ductile fracture by the growth of holes. J.Appl. Mech., 35 (1968) 363-371.
    2. A.Needleman, Void growth in an elastic-plastic medium. J.Appl. Mech., 39 (1972) 964-970.
    3. A.L.Gurson, Continuum theory of ductile rupture by void nucleation and growth : Part Ⅰ- yield criteria and flow rules for porous ductile media. J.Energ.Matl.Tech.,Trans.ASME, (1977) 2-15.
    4. U.Stigh, Effects of interacting cavities on damage parameter. J.Appl. Mech, 53 (1986) 485-490.
    5. H.S.Hou and R.Abeyarante, Cavitation in elastic and elastic-plastic solids, J.Mech.Phys.Solids, 40 (1992) 571-592.
    6. A.N.Gent,Cavitation in rubber: a cautionary tale. Rubber Chem.Tech., 63 (1990) G49-G53.
    7. L. Cheng and T.F. Guo, Void interaction and coalescence in polymeric materials. Int. J. Solids Struct., 44(2007)1787-1808.
    8. C. J. Quigley and D.M. Parks, The finite deformation field surrounding a mode I plane strain crack in a hyperelastic incompressible material under small-scale nonlinearity. Int. J. Fracture, 65(1994)75-96.
    9. J.C. Sobotka, R.H., Jr. Dodds and P. Sofronis, Effects of hydrogen on steady, ductile crack growth: Computational studies. Int. J. Solids Struct., 46(2009)4095-4106.
    10. J.M.Ball, Discontinous equilibrium solutions and cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond, A306 (1982) 557-610.
    11. C.A.Stuart, Radially symmetric cavitation for hyperelastic materials, Ann.Inst.Henri Poincare-Analyse non lineare, 2 (1985) 33-66.
    12. C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity, 16 (1986) 189-200.
    13. F.Meynard, Existence and nonexistence results on the radially symmetric cavitation problem. Quart.Appl.Math. 50 (1992) 201-226.
    14. C.A.Stuart, Estimating the critical radius for radially symmetric cavitation, Quart.Appl.Math., 51 (1993) 251-263.
    15. S.Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int.J.Non-Linear Mech., 30 (1995) 899-914
    16. S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material. J.Appl.Mech. 61 (1994) 395-401
    17. H.C.Lei(李顯智) and H.W.Chang, Void formation and growth in a class of compressible solids. J.Engrg.Math., 30 (1996) 693-706.
    18. X.G. Yuan, Z.Y. Zhu and C.J. Cheng, Study on cavitated bifurcation problems for sphere composed of hyper-elastic materials. J.Engrg. Math., 51 (2005)15-34.
    19. R. Cortes, The growth of microvoids under intense dynamic loading. Int. J. Solids Struct. 29(1992)1339-1350.
    20. R. Cortes, Dynamic growth of microvoids under combined hydrostatic and deviatoric stresses. Int. J. Solids Struct. 29(1992)1637-1645.
    21. F.L. Addessio, J.N. Johnson and P.J. Maudlin, The effect of void growth on Taylor cylinder impact experiments. J. Appl. Phys., 73(1993)7288-7297.
    22. Z.P. Wang, Growth of voids in porous ductile materials at high strain rate. J. Appl. Phys., 76(1994)1535-1542.
    23. J. Zheng, Y.L. Bai and Z.P. Wang, Influence of inertial and thermal effects on the dynamic growth of voids in porous ductile materials. J. Phys. IV France Colloq. C8 (DYMAT 94) 4(1994)765-770.
    24. W. Tong and G. Ravichandran, Inertial effects on void growth in porous viscoplastic materials. Trans. ASME: J. Appl. Mech., 62(1995)633-639.
    25. X.Y. Wu, K.T. Ramesh and T.W. Wright, The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading. J. Mech. Phys. Solids, 51(2003)1-26.
    26. M.S.Chou-Wang and C.O.Horgan, Cavitation in nonlinear elastodynamics for neo-HooKean materials. Int.J.Engrg.Sci., 27 (1989) 967-973.
    27. X Yuan, Z. Zhu and C. Cheng, Qualitative analysis of dynamical behavior for an incompressible neo-Hookean spherical shell. Appl. Math. Mech. (English Edition), 26(2005)973-981.
    28. X Yuan, Z. Zhu and R. Zhang, Cavity formation and singular periodic oscillations in isotropic incompressible hyperelastic materials. Int. J. Non-Linear Mech., 41(2006)294-303.
    29. X.G. Yuan and H.W. Zhang, Effects of constitutive parameters and dynamic tensile loads on radially periodic oscillation of micro-void centered at incompressible hyperelastic spheres. CMES, 40(2009)201-224.
    30. R.W. Ogden, “Non-Linear Elastic Deformations”. Ellis Horwood Limited, Chichester, England,1984.

    QR CODE
    :::