| 研究生: |
張志禮 Chih-lee Chang |
|---|---|
| 論文名稱: |
Riccati方程式矩陣邊界解方法之研究 Matrix Bounds of the Solution for the Algebraic Riccati Equations |
| 指導教授: |
莊堯棠
Yau-Tarng Juang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 離散雷卡提方程式 、連續雷卡提方程式 、矩陣邊界解 、離散李亞普諾夫方程式 、連續李亞普諾夫方程式 |
| 外文關鍵詞: | Discrete Riccati Equation, Continuous Riccati Equation, Matrix Bound, Discrete Lyapunov Equation, Continuous Lyapunov Equation |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
就離散系統而言,以解離散李亞普諾夫(Lyapunov)方程式為中心,我們對離散Riccati方程式,提出新矩陣邊界解,在此方法中只要離散的Lyapunov方程式的解存在,我們必可求得所要的矩陣邊界解。因此,我們不需要 BB''>0 or Q>0 的限制條件,另一方面,如果 BB''>0 or Q>0 的條件成立下,在某些情形下我們的方法表現出,即使Lyapunov方程式唯一解不一定存在(亦即狀態矩陣 不穩定時),本文的方法亦可求得Riccati 方程式的邊界解。
而在連續的系統方面,亦即以連續Lyapunov方程式為中心,本論文提出一組矩陣邊界解。文中提到並證明如何以最佳控制理論,得到最初始上界,同時我們利用新的方法來證明Riccati 方程式,可經由Lyapunov方程式的遞歸解來求得真實解,其中的條件只要控制系統為可穩定系統。本章中,我們的主要研究方向,在於探討連續Riccati方程式的遞歸解的速度及精確度,基於穩定問題限制,只能推展出上邊界的遞歸解,對於下邊界只能求出其對應上邊界的矩陣近似解。在本論文中我們將探討,藉由矩陣邊界來解離與連續散雷卡提(Riccati)方程式的新方法,本文中所提的新法將改善現存文獻中的限制,並可獲得較接近精確值的解,且可使收斂速度加快。
就離散系統而言,以解離散李亞普諾夫(Lyapunov)方程式為中心,我們對離散Riccati方程式,提出新矩陣邊界解,在此方法中只要離散的Lyapunov方程式的解存在,我們必可求得所要的矩陣邊界解。因此,我們不需要 BB''>0 or Q>0 的限制條件,另一方面,如果 BB''>0 or Q>0 的條件成立下,在某些情形下我們的方法表現出,即使Lyapunov方程式唯一解不一定存在(亦即狀態矩陣 不穩定時),本文的方法亦可求得Riccati 方程式的邊界解。
而在連續的系統方面,亦即以連續Lyapunov方程式為中心,本論文提出一組矩陣邊界解。文中提到並證明如何以最佳控制理論,得到最初始上界,同時我們利用新的方法來證明Riccati 方程式,可經由Lyapunov方程式的遞歸解來求得真實解,其中的條件只要控制系統為可穩定系統。本章中,我們的主要研究方向,在於探討連續Riccati方程式的遞歸解的速度及精確度,基於穩定問題限制,只能推展出上邊界的遞歸解,對於下邊界只能求出其對應上邊界的矩陣近似解。
In this thesis, we will presents new matrix bounds of the solution for the discrete and continuous Riccati equations. Based on the solution of certain continuous and discrete Lyapunov equations, the improved upper and lower matrix bounds are obtained. In the discrete systems, the upper and lower matrix bounds always exist if the DLE solution exists. Then, further improvements on the bounds are presented. On other hand, these upper and lower matrix bounds of solution for the continuous Riccati equation are always exist if the system is stabilizable. Numerical examples are given to show that our methods are less conservative and less restrictive than some recent results.
[1] P. Agathoklis, E. I. Jury, and M. Mansour, “The margin of stability of 2-D linear discrete systems,” IEEE Trans. Acoust. speech, signal processing, vol. ASSP-30, pp. 869-874, Dec. 1982.
[2] A. R. Amir-Moez, “Extreme properties of eigenvalue of a Hermitian transformation and singular values of the sum and product of linear transformation,” Duck Math. J, vol. 23, pp.463-476, 1956.
[3] W. F. Arnold, III, and A. J. Laub, “Generalized eigen-problem algorithms and software for algebraic Riccati equations,” Proc. IEEE vol.72, pp.1746-1754, 1984.
[4] R. H. Bartels and G. W. Stewart, “Solution of the matrix equation,” Comm. ACM. Vol.15, pp.820-826, 1972.
[5] A. Czornik, “Comments on ‘Bounds for the eigenvalues of the solution of the discrete Riccati equations’ by E. Yaz,” Inter. J. Sys. Science, Vol.31, No.6, p.809, 2000.
[6] J. Garloff, “Bounds for the eigenvalues of the solution of the discrete Riccati and Lyapunov equations and the continuous Lyapunov equation,” Inter. J. control, Vol.43, pp.423-431, 1986.
[7] J. C. Geromel and J. Befnussou, “On bounds of Lyapunov’s matrix equation,” IEEE. Trans. Automat. Contr., vol. AC-24, No. 3, pp.482-487, 1979.
[8] C. Gong and S. Thompson, “Stability margin evaluation for uncertain linear systems,” IEEE. Trans. Automat. Contr., vol.39, no. 3, pp.548-550, 1994.
[9] R. A. Horn and C. R. Jhnson, “Matrix analysis,” Cambridge: Cambridge Univ. press, 1985.
[10] Y. T. Juang, “Robust stability and roubust pole assignment of linear systems with structured uncertainty,” IEEE Trans. Automat. Contr., vol. 36, no. 5, PP. 635-637, 1991.
[11] Y. T. Juang and C. L Chang, “A counterexample of ‘Stability margin evaluation for uncertain linear systems’,” IEEE. Trans. Automat. Contr., vol.45, no. 10, pp.1934-1935, 2000.
[12] Y. T. Juang and C. M. Lai, “Performance bounds of linear discrete-time optimal systems with structured perturbations,” Journal of control systems and technology, vol. 4, No. 4, pp.289-294, 1996.
[13] T. Kang, B. S. Kim and J. G. Lee, “ Spectral norm and trace bounds of algebraic matrix Riccati equation,” IEEE Trans. Automat. Contr., Vol.41, No.12, pp.1828-1830, 1996.
[14] V. R. Karanam, “Lower bounds on the solution of Lyapunov matrix and algebraic Riccati equation,” IEEE Trans. Automat. Contr., AC-26, pp.1288-1290, 1981.
[15] V. R. Karanam, “Eigenvalue bounds for algebraic Riccati and Lyapunov equations,” IEEE Trans. Automat. Contr., AC-27, pp.461-463, 1982.
[16] V. R. Karanam, “A note on eigenvalue bounds for algebraic Riccati equation,” IEEE Trans. Automat. Contr., AC-28, pp.109-111, 1983.
[17] J. H. Kim and Z. Bien, “Some bounds of the solution of algebraic Riccati equation,” IEEE Trans. Automat. Contr., Vol.27, pp.1209-1210, 1992.
[18] S. W. Kim and P. G. Park, “Matrix bound of the discrete ARE equation,” System & control letter, vol. 36, pp. 15-20, 1999.
[19] S. W. Kim, P. G. Park and W. H. Kwon, “Lower bounds for the trace of the solution of the discrete equation,” IEEE Trans. Automat. Contr., Vol.38, pp.312-314, 1993.
[20] N. Komaroff, “Matrix inequalities to estimating solutions sizes of Riccati and Lyapunov equations,” IEEE Trans. Automat. Contr., AC-34, pp.97-98, 1989.
[21] N. Komaroff, “Upper bound for the solution of discrete Riccati equation,” IEEE Trans. Automat. Contr., Vol.37, No. 9, pp.1370-1073, 1992.
[22] N. Komaroff, “Diverse bounds for the eigenvalues of the continuous algebraic Riccati equation,” IEEE Trans. Automat. Contr., Vol.39, No. 3, pp.532-534, 1994.
[23] N. Komaroff, “Iterative matrix bound and computational solutions of discrete algebraic Riccati equation,” IEEE Trans. Automat. Contr., Vol.39, No. 8, pp.1676-1678, 1994.
[24] N. Komaroff and B. Shahian, “Lower summation bounds for the discrete Riccati and Lyapunov equation,” IEEE. Trans. Automat. Contr., Vol.37, no. 7, pp.1078-1080, 1992.
[25] M. M. Konstantinov, P. Hr. Petkov, N. D. Christov, V. Mehrmann, A. Barraud and S. Lesecq, “Conditioning of the generalized Lyapunov and Riccati equation,” Proceedings of the American Control Conference, pp.2253-2254, June 1999.
[26] W. H. Kwon, Y. S. Moon and S. C. Ahn, “Bound in algebraic Riccati and Lyapunov equation: a survey and some new result,” Internal. J. Control, vol.64, pp.377-389, 1996.
[27] W. H. Kwon and A. E. Pearson, “A note on the algebraic matrix Riccati equation,” IEEE Trans. Automat. Contr., AC-22, pp.143-144, 1977.
[28] B. H. Kwon and M. J. Youn, “Common on ‘On Some bounds in the algebraic Riccati and Lyapunov equation’,” IEEE Trans. Automat. Contr., Vol.22, pp.591, 1986.
[29] B. H. Kwon, M. J. Youn and Z. Bien, “On bounds of the Riccati and Lyapunov matrix equation,” IEEE Trans. Automat. Contr., Vol.30, pp.1134-1135, 1985.
[30] V. B. Larin, “About solution of the continuous-time algebraic Riccati equation,” IEEE Proceedings of the world congress on Intelligent Contr. and Automat., pp.3474-3475, 2000.
[31] A. J. Laub, “A schur method for solving algebraic Riccati equation,” IEEE Trans. Automat. Contr., AC-24, pp.913-921, 1979.
[32] C. H. Lee, “On the matrix bound for the solution matrix of the discrete algebraic Riccati equation,” IEEE Trans. Automat. Contr., vol. 43, No.5, pp. 402-406, 1996.
[33] C. H. Lee, “Eigenvalue upper and lower bounds of the solution for the continuous algebraic matrix Riccati equation,” IEEE Trans. Circuits and Sys-I: Fundamental Theory and Appl., vol. 43, No.8, pp. 683-686, 1996.
[34] C. H. Lee, “New results for bounds of solution for continuous Riccati and Lyapunov equations,” IEEE Trans. Automat. Contr., Vol. 42, No.1, pp. 118-123, 1997.
[35] C. H. Lee, “Upper matrix bound of the solution for the discrete Riccati equation,” IEEE Trans. Automat. Contr., Vol. 42, No.6, pp. 840-842, 1997.
[36] C. H. Lee, “Eigenvalue upper bounds of the solution of the continuous Riccati equation,” IEEE Trans. Automat. Contr., Vol. 42, No.9, pp. 1268-1271, 1997.
[37] C. H. Lee, “One the upper and lower bound of solution for continuous Riccati matrix equation,” Internal. J. Contr., Vol. 66, No.1, pp. 105-118, 1997.
[38] C. H. Lee, “Upper and lower bound of solution for dircrete algebraic Riccati and Lyapunov matrix equations,” Internal. J. Contr., Vol. 68, No.3, pp. 579-598, 1997.
[39] Frank L. Lewis and Vassilis L. Syrmos, “Optimal control,” John Wiley & Sone, New York, 1995.
[40] R. H. Middleton and G. C. Goodwin, “Digitial contr and estimation: a nified approach,” Englewood Cliffs, NJ: Prentice-Hall, 1990.
[41] T. Mori, “A note on bounds for the solution to the algebraic matrix Riccati and Lyapunov equation,” Trans. of the society of Instrumentation and control engineers, Japan, 62-A, pp.760-762, 1980.
[42] T. Mori and I. A. Derese, “A brief summary of the bounds on the solution of the algebraic Riccati equation in control theory,” Internal. J. Contr., Vol. 39, pp.247-256, 1984.
[43] T. Mori, N. Fukuma, and M. Kuwahara, “Explicit solution and eigenvalue bounds in the lyapunov matrix equation,” IEEE Trans. Automat. Contr., AC- 31, pp. 656-658, 1986.
[44] T. Mori, N. Fukuma, and M. Kuwahara, “On the discrete Riccati equation,” IEEE Trans. Automat. Contr., vol. 32, pp. 828-829, 1987.
[45] M. Mrabit and A. Hmamed, “Bounds for the solution of the Lyapunov matrix equation-a unified approach,” Systems and control letters, Vol.18, pp.73-81, 1992.
[46] T. Pappas, A. J. Laub and N. R. Sandell, JR, “On the numerical solution of the discrete-time algebraic Riccati equation,” IEEE Trans. Automat. Contr., AC-25, pp. 631-641, 1980.
[47] R. V. Patel and M. Toda, “On norm bounds for algebraic Riccati and Lyapunov equations,” IEEE Trans. Automat. Contr., AC-23, pp. 87-88, 1978.
[48] S. Peng and C. E. de Souza, “Upper bounds in the algebraic Riccati equation under perturbations of the coefficients,” IEEE Proceedings of the 29th conference on Decision and Control, pp. 3470-3474, December 1990.
[49] M. A. Rotea and A. E. Frazho, “Bounds on solutions to algebraic Riccati and properties central solutions,” System & control letter, Vol. 19, pp. 341-352, 1992.
[50] M. A. Rotea and A. E. Frazho, “Bounds on solutions to algebraic Riccati with applications,” IEEE Proceedings of the 31st conference on Decision and Control, pp. 2274-2275, December 1992.
[51] M. K. Tippett, “Bounds for solution of the discrete algebraic Lyapunov equation,” Automatica, Vol.34, No.2, pp. 275-277, 1998.
[52] M. K. Tippett and D. Marchesin, “Bounds for solution of the discrete algebraic Lyapunov equation,” IEEE Trans. Automat. Contr., Vol.44, No.1, pp. 214-218, 1999.
[53] M. K. Tippett and D. Marchesin, “Upper bounds for solution of the discrete algebraic Lyapunov equation,” Automatica, Vol.35, pp.1485-1489, 1999.
[54] M. T. Tran and M. E. Sawan, “A note on the discrete Lyapunov and Riccati matrix equation,” Internal. J. Contr., Vol. 3, pp.337-341, 1984.
[55] S. D. Wang, T. S. Kuo and C. F. Hsu, “Trace bounds on the solution of the algebraic Riccati and Lyapunov equations,” IEEE Trans. Automat. Contr., Vol.31, pp. 654-656, 1986.
[56] M. Vidyasagar, “Nonlinear system analysis,” Prentice-Hall, Englewood Cliffs, New Jersey, 1993.
[57] K. Yasuda and K. Hirai, “Upper and lower bounds on the solution of the algebraic Riccati equations,” IEEE Trans. Automat. Contr., AC-24, pp. 483-487, 1979.
[58] X. F. Zhang, J. S. Luo and A. Jhonson, “New performance bounds of continuous-time LQ systems with uncertain parameters,” Optimal Control Applications & Methods, vol. 15, pp. 133-143, 1994.