| 研究生: |
陳文碩 Wein-Shue Chen |
|---|---|
| 論文名稱: |
利用昆蟲桿狀病毒表現系統生產人類干擾素-γ Characterization of human interferon-gamma expressed in baculovirus expression system |
| 指導教授: |
黃雪莉
Shir-Ly Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 桿狀病毒表現系統 、干擾素 |
| 外文關鍵詞: | interefron-gamma, baculovirus expression system |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
干擾素 ( interferon ) 屬於細胞激素的成員之一,具重要免疫調節( immunomodulation ) 功能,會因病毒感染細胞而被誘發生成,並抑制人體內病毒的複製與細胞生長,是抵抗多種病毒感染的第一道防線。干擾素-γ (interferon-gamma, IFN-γ) 是可抑制腫瘤及參與免疫反應,其免疫調節能力比其他干擾素為佳,也是重要的醫療蛋白之一。本實驗的設計(1) 希望能利用RhPV蚜蟲病毒 (Rhopalosiphum padi virus) 5’UTR 的IRES序列及水母 ( Aequorea victoria) 的綠螢光 (enhanced green flouresecent protein) 蛋白當作偵測標誌,以cap-independent的轉譯機制來表現綠螢光以快速挑選重組病毒。(2)將IFN-γ基因3’末端同義融合 (in frame fusion) 六個組胺酸 ( histidine) 序列的核酸序列,以利用固定化金屬親和性層析法 (Immobilized metal affinity chromotagraphy, IMAC ) 純化出IFN-γ蛋白。(3) 利用對醣蛋白 ( glycoprotein ) 上醣基具有專一性作用的植物凝集素 ( lectin ) 來分析三種不同的昆蟲細胞株,包括秋行軍蟲 ( Spodoptera frugiperda , SF21 )、甜菜夜蛾 ( Spodotera exigua, SE ) 與斜紋夜蛾 ( Spodoptera litura, SL ) 所生產純化的IFN-γ蛋白醣基化不同。(4) 利用抗登革熱病毒試驗作為測試對無血清培養基所生產經IMAC純化的IFN-γ蛋白 ( purify SF21) 以及有血清、無血清培養基所生產的IFN-γ蛋白, 我們分定義為 (serum SF21 and no serum SF21) 與市售 ( commercial ) 的IFN-γ蛋白比較生物活性的不同。結果顯示,確實可利用RhPV-IRES-EGFP中帶有綠螢光可快速挑選病毒,經IMAC所純化IFN-γ蛋白的純度更高達96%以上,自SE細胞株所生產純化出的IFN-γ蛋白擁有更多protein band與較多mannose的醣基化形式,所以其醣基化的形式較SF21的細胞株更複雜。而從SL的細胞株所生產的IFN-γ蛋白則與SF21生產的差不多,最後,由無血清培養基所生產IFN-γ蛋白的濃度達 301.1 pg/ml,可有效地抑制 90%登革熱病毒的生成。而由無血清陪養基所生產後經IMAC純化IFN-γ蛋白的濃度達 389.47 pg/ml,也可有效地抑制 90%登革熱病毒的生成。
Abtract
Interferon plays a role in inhibition of tumor growth and participates in immunoreactions. Among interferons, interferon-γ was one of the most important therapeutic protein and ability of immunodulation of interferon-γ was better than other type interferon. The purpose of the thesis discussed how to produce bioactive human interferon-γ rapidly. (Ⅰ) Use RhPV (Rhopalosiphum padi virus) 5’UTR IRES (internal ribosome entry site) and green fluorescent protein to develop a rapid screening strategy for recombinant virus . (Ⅱ) Use hexahistidine peptide coding sequence introduced at 3’ end of the recombinant interferon-γ gene, thus after expressed in baculovirus expression system, the secreted interferon-γ protein in cultured supernatants was purified by IMAC (immunobilized metal affinity chromatography). (Ⅲ) Use lectin, which was specific to the terminal of the carbohydrates, to analyze glycosylated pattern of purified interferon-γ produced by three different insect cells (included SF21, SL, and SE cells). (Ⅳ) Use anti-dengue virus activity to test biological activity of interferon-γ produced from two different cultured conditions, which was serum and serum-free medium and interferon-γ produced by serum-free cultured condition was purified by IMAC. In this study, we confirmed the RhPV 5’UTR IRES sequence coupled with green fluorescence could facilitate the isolation of recombinant virus. And the purity of interferon-γ protein purified by IMAC reached 96%. Furthermore, purified interferon-γ protein produced from the SE cell had more glycosylated types of protein and mammose bands, thus the glycosylated types were more complex than the SF21 cell. Besides, the glycosylated types of the interferon-γ protein from the SL cell is similar to the SF21 cell. In the end, the concentration of the interferon-γ protein produced by serum-free cultured condition reaches 301.1 pg/ml and it could inhibit 90% dengue virus productions. In addition, the concentration of the purified interferon-γ protein under serum-free cultured condition reaches 389.47 pg/ml and it could also inhibit 90% dengue virus productions.
參考文獻
Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 19: 245-52. Blissard, G. W. and Rohrmann, G. F. (1990) Baculovirus diversity and molecular biology. Annu. Rev. Entomol. 35: 127-55. Buchmeier, N. A., and Schreiber, R. D. (1985) Requirement of endogenous interferon-γ production for resolution of listeria monocytogenes infection. Proc. Natl. Acad. Sci. 82: 7404-8. Bromberg, J. F., Horvath, C. M., Wen, Z., Schreiber, R. D.and Darnell Jr, J. E. (1996) Transcriptionally active stat1 is required for the anti-proliferative effects of both interferon-α and interferon-γ. Proc. Natl. Acad. Sci. 93:7673-8.
Chen, T. L., Lin, Y. L., Lee, Y. L., Yang, N. S. and Chan, M. T. (2004) Expression of bioactive human intereferon-gamma in transgenic rice cell suspension cultures. Transgenic Res. 13: 499-510. Cruz, P. E., Martins, P. C., Alves, P. M., Peixoto, C. C., Santos, H., Moreira, J.L. and Carrondo, M. J. (1999) Proteolytic activity in infected and noninfected insect cells: degradation of HIV-1 Pr55gag particles. Biotechnol Bioeng. 65: 133-43.
Diamond, M. S., Roberts, T. G., Edgil, D., Lu, B., Ernst, J. and Harris, E. (2000) Modulation of dengue virus infection in human cells by alpha, beta and gamma interferons. J. Virol. 74: 4957-66.
Ealick, S. E., Cook, W. J., Vijay Kumar, S., Carson, M., Nagabhushan, T. L., Trotta, P. P. and Bugg, C. E. (1991) Three-dimensional structure of recombinant human interferon-γ. Science 252: 698-702. Engelhard, E. K., Kam-Morgan, L. N. W., Washburn, J. O. and Volkman, L. E. (1994) The insect tracheal system: a conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proc. Natl. Acad. Sci. USA 91: 3224-27. Farra, M. A and Schreiber, R. D. (1993) The molecular cell biology of interferon-γ and its recetor. Annu. Rev. Immunol. 11: 571-611. Flipsen, J. T., Martens, J. W., Van Oers, M. M., Vlak, J. M. and van Lent, J. W. (1995) Passage of Autographa californica nuclear polyhedrosis virus through the midgut epithelium of Spodoptera exigua larvae. Virology 208: 328-35. Glocker, B., Hoopes Jr, R. R. and Rohrmann, G. F. (1992) In vitro transactivation of baculovirus early genes by nuclear extracts from Autographa californica nuclear polyhedrosis virus-infected Spodoptera frugiperda cells. J. Virol. 66: 3476-84. Goldman, M. H., James, D. C., Rendall, M., Ison, A. P., Hoare, M. and Bull, A. T. (1998) Monitoring recombinant human interferon-gamma N-glycosylation during perfused fluized-bed and stirred-tank batch culture of CHO cells. Biotechnol Bioeng. 60: 596-607. Gui, C., Radzaowski, T. E., Villegas, N., Kastelein, R. and Hunter, C. A. (2000) Identification of STAT4-dependent and independent mechanisims of resistance to toxoplasma gondii. J. Immunol. 165: 2619-27.
Hooker, A. D., Green, N. H., Baines, A. J., Bull, A. T., Jenkins, N., Strange, P. G. James, D. C. (1999) Constraints on the transport and glycosylation of reconbiant IFN-γ in Chinese hamster ovary and insect cells. Biotechnol.Bioeng. 63: 559-72.
Huh, N. E. and Weaver, R. F. (1990) Identifying the RNA polymerases that synthesize specific transcripts of the Autographa californica nuclear polyhedrosis virus. J. Gen. Virol. 71: 195-201. Ijzermans, J. N. and Marquet, R. L. (1989) Interferon-gamma: a review. Immunobiology 179: 456-73. Isaacs, A. and Lindenmann, J. (1957) Virus interference. The interferon. Proc. Roy. Soc. London. B 147: 258-73. Jarvis, D. L., Hows, D. and Aumiller, J. J. (2001) Novol baculovirus expression vectors that procide siaylation of recombinant glycosylation in lepidopteran insect cells. J. Virol. 75: 6233-27. Jonasca, E. and Haluska, F. G. (2001) Interferon in oncological practice:review of interferon biology, clinical applications and toxicities. Oncologist 6: 34-55. Joosten, C. E. and Shuler, M. L. (2003) Production of a siaylated N-linked glycoprotein in insect cells: Role of glycosidases and effect of harvest time on glycosylation. Biotechnol Prog. 19: 193-201. Josiane, S., Hiscott, J. Delattre, O. and Wietzerbin, J. (2000) IFN-β induces serine phosphorylation of stat-1 in Eeing’s sacoma cells and mediates apoptosis via induction of IRF-1 and activation of caspase-7. Oncogene 19: 3372-83. Kelker, H. C., Yip, Y. K., Anderson, P. and Vilcek, J. (1983) Effects of glycosidase treatment on the physicochemical properties and biological activity of human interferon-gamma. J. Biol. Chem. 258: 8010-13.
Kidd, I. M. and Emery, V. E. (1993) The use of baculovirus as expression vectors Appl. Biochemi. Biotechnol. 42: 137-159. King, L. A. and Possee, R. D. (1992) The baculovirus expression system: a laboratory manual, Chapman and Hall, London.
Kitt, P. A. and Possee, R.D. (1993) Amethod for producing recombinant baculovirus expression system vector at high efficiency. Bio/Techniques. 14: 810-7. Labuda, T., Sundstedt, A. and Dohlsten, M. (2000) Selective induction of p38 mitogen-activated protein kinase activity following A6H co-stimulation in primary human CD4+ T cells. Int. Immunol. 12: 253-261.
Lipscomb, M. L., Palomares, L. A., Hernandez, V., Ramirez, O. T. and Kompala, D. S. (2005) Effect of production method and gene amplification on the glycosylation pattern of a secreted reporter protein in CHO cells. Biotechnol. Prog. 21: 40-9.
Luque, T. and O’Reilly, D. R. (1999) Generation of baculovirus expression vectors. Mol. Biotechnol. 13: 153-63. Maeda, S. (1989) Expression of foreign genes in insects using baculovirus vectors. Annu. Rev. Entomol. 34: 351-72.
Marchal, I., Cerutti, M., Mir, A., Juliant, S., Devauchelle, G., Cacan, R. and Verbert, A. (2001) Expression of a membrane-bound form of trypanosome cruzi trans-sialidase in baculovirus-infected insect cells: a potential toll for siaylation of glycoprotein produced in the baculovirus-insect cells system. Glycobiology 11: 593-603. Miller, L. K. (1988) Baculovirus as gene expression vectors. Annu Rev Microbiol. 42 : 177-199. Ogonah, O. W., Freedman, R. B., Jenkins, N., Patel, K., Rooney, B. C. (1996) Isolation and characterization of an insect cell line able to perform complex N-linked glycosylation on recombinant protein. Bio/Technology 14: 197-202. O’Reilly, D. R., Miller L. K., and Luckow, V. A. (1992) Baculovirus expression vectors: a laboratory manual, New York: W.H. Freeman and co., New York. Pennock, G. D., Shoemarker, C. and Miller, L. K. (1984) Strong and regulated expression of Eschrichia Coli β-galactosidase in insect cells with a baculovirus vector. Mol Cell Biol. 4: 399-406. Paul, W. E. and Seder, R. A. (1994) Lymphocyte responses and cytokines. Cell 76: 241-51.
Paul J, Muchowski, Ke Ning, Crislyn D’Souza-Schorey and Stanley Fields. (2002) Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc Natl Acad Sci. USA 99:727-32.
Pechenoy, S. E., Tikhonoy, R. V., Shingarova, L. N., Korobko, V. G., Yakimov, S. A., Klyushnichenko, V. E., Babajantz, A. A., Beliaev, D. L., Kuznetzov, V. P., Shvetz, V. I. and Wulfson, A. N. (2002) Method for preparation of recombinant cytokine proteins V. mutant analogues of human interferon-γ with higher stability and activity. Protein Expr. Purif. 24: 173-180. Puddu, P., Fantuzzi, L., Borghi, P., Varano, B., Rainaldi, G., Guillemard, E., Malorni, W., Nicaise, P., Wolf, S. F. Belardelli, F. and Gessani, S. (1997) IL-12 induces IFN-γ expression and secretion in mouse peritoneal macrophages. J. Immunol. 159:3490-7. Satoko Watanabe, Takehiro Kokuho, Hitomi Takahashi, Masashi Takahashi, Takayuki Kubota, Sheigeki Imumaru. (2002) Siaylation of N-glycans on the recombinant proteins expressed by baculovirus-insect cell system under β-N-acetylglucosaminidase inhibition. J. Biol. Chem. 277: 5090-3. Smith, G. E., Summers, M. D. and Fraser, M. J. (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3: 2156-65.
Scahil, S. J., Devos, R., Van der Heyden, J. and Fiers, W. (1983) Expression and characterization of the product of a human immune interferon cDNA gene in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 80: 4654-8
Sareneva, T., Cantell, K., Pyhala, L. Pirhonen, J. and Julknen, I. (1993) Effect of carbohydrates on the pharmacokinetics of humen interferon-gamma. J. Interferon Res. 13: 267-9. Sareneva, T., Mortz, E., Tolo, H., Roepstorff, P. and Julkunen, I. (1996) Biosynthesis and N-glycosylation of human interferon-gamma Asn25 and Asn97 differ markedly in how efficiently they are glycosylated and in their oligosaccharide composition. Eur. J. Biochem. 242: 191-200.
Slodowski, O., Bohm, J., Schone, B. and Otto, B. (1991) Carboxyterminal truncated rhuIFN-γ with a substitution of Gln133 or Ser132 to leucine leads to higher biological activity than in the wild type. Eur. J. Biochem. 202: 1133-40. Summers, M. D. (1995) Virus Taxonomy: the classification and nomenclature of viruses.In sixth report of the International Committee on Taxonomy of Viruses. Archives of Virology, Supplementum 3. Springer-Verlag, Wien, Inc., New York.
Taro, F., Matsuda, S. and Koyasu, S. (2000) Synergistic effects of IL-4 and IL-18 on IL-12-dependent IFN-γ production by dendritic cells. J. Immunol. 164: 64-71. Tweeten, K. A., Bulla, L. A. and Consigli, R. A. (1980) Characterization of an extremely basic protein derived from granulpsis virus nucleocapsids. J. Virol. 33: 866-876. Wheelock, E. (1965) Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin. Science 149: 310-1.
Woolaway, K. E., Lazaridis, K., Belsham, G. J., Carter, M. J. and Robert, L. O. (2001) The 5’ untranslated region of rhopalosiphum padi virus contains an internal ribosome entry site which functions efficiently in mammalian, plant and insect translation system. J. Virol. 75: 10244-49. Vialard, J. E., Arif, B. M. and Richardson C. D. (1995) Introduction to the molecular biology of baculoviruses. Methods Mol .Biol. 39: 1-24 Yamada, K., Nakajima, Y. and Natori, S. (1990) Production of recombinant sarcotoxin IA in Bombyx mori cells. Biochemistry 69: 74–82. Younes, M. H. and Amsden, B. G. (2002) Interferon-γ therapy: evaluation of routes of administration and delivery system. J. Pharm. Sci. 91:2-17. 揚豐名: 開發IRES 序列於桿狀病毒表現系統之研究. 2002, 國立嘉義大學碩士論文.