跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃榮星
Jung-hsing Huang
論文名稱: 應用於Radio-over-Fiber系統之超高速微波光子發射器
Ultra-High-Speed Microwave Integrated Photonic Transmitter for Radio-Over-Fiber Applications
指導教授: 凃文化
Wen-hua Tu
陳念偉
Nan-wei Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 86
中文關鍵詞: 微波光子發射器近彈道單載子光檢測器光電檢測器光二極體光子積體發射器超高速無線傳輸光纖無線通信W頻段
外文關鍵詞: NBUTC-PD, Microwave Integrated Photonic Transmitter, ultra-high-speed wireless data rate, RoF, Radio-over-Fiber, W-band, photonic diode, photodetector
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以微波光子通信系統(microwave photonic communication systems)中的Radio-over-Fiber (RoF)系統應用為主,使用近彈道單載子光檢測器(near-ballistic uni-traveling-carrier photodiode, NBUTC-PD)此高速寬頻且可供光電轉換效果之主動積體元件與被動電路整合,實現出具有超高速無線傳輸功能之毫米波發射器。
    為設計高速無線傳輸系統之發射端,於論文中提出NBUTC-PD之等效電路,以模擬方式即提供光電轉換與中頻響應之準確預測,提升設計效率與節省成本;將上述與射頻扼流器(RF-choke)、W頻帶帶通濾波器(W-band bandpass filter)、平面電路至導波管(Waveguide)轉接器及號角天線(Horn Antenna)等被動電路元件整合,設計並實作出光子積體傳輸器(integrated photonic transmitter);文中亦以上述電路改良後,提出新式射頻扼流器提供元件良好散熱與提升中頻響應頻寬,有效將數位訊號無線傳輸速率提高至20 Gbit/s。


     In this thesis, an integrated photonic transmitter front-end is demonstrated. In essence, the front-end circuit consists of an RF-choke, a W-band bandpass filter, an uni-planar slotline-to-waveguide transition, and a W-band horn antenna. The front-end is built with a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD), which exhibits an extremely broadband bandwidth as well as an ultra-wide optical-to-electrical response. It is shown that the NBUTC-PD with proper integrated front-end circuits can find applications in the Radio-over-Fiber (RoF) system for ultra-high-speed wireless data transmission.
     This thesis also presents equivalent circuits to further simplify the system design procedures. The equivalent circuit of the entire system leads to reasonably accurate W-band optical-to-electrical response and intermediate frequency (IF) modulated bandwidth. For experimental demonstration, the proposed front-end is integrated with NBUTC-PD through flip-chip bonding for realization of a W-band integrated photonic transmitter. Since the wide optical-to-electrical bandwidth (35 GHz) as well as broad IF modulated bandwidth (25 GHz), the proposed photonic transmitter is of a high data rate up to 20 Gbit/s and expected to find applications in the broadband wireless-over-fiber system.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 ix 第一章 序論  1.1 研究動機與目的  1 1.2 RoF系統簡介  2 1.3 近彈道單載子光檢測器於RoF系統之應用  5 1.4 文獻探討  6 1.5 論文概述  9 第二章 光檢測器電路模型之探討  10 2.1 近彈道單載子光檢測器概述  10 2.2 光電轉換等效模型建立  12 2.3 改良之W頻帶光電轉換等效電路模型  15 2.4 IF頻段之光電轉換等效電路模型  17 第三章 微波光子通信系統射頻前端電路  20 3.1 平面電路至導波管轉接器  22 3.2 射頻扼流器  27 3.3 W頻段帶通濾波器  29 3.4 積體化光檢測器與被動電路連接  32 3.5 光電轉換之整體響應  34 3.6 中頻調變響應之模擬與量測  39 3.7 光檢測器應用於高速無線傳輸  40 第四章 中頻調變頻寬拓展與散熱設計  42 4.1 射頻扼流器分析  42 4.2 中頻調變頻寬改善方法  48 4.3 底層金屬墊片架構  50 4.4 改良饋入電路與系統整合  56 4.5 中頻調變響應模擬與量測  59 4.6 改良後無線傳輸結果  60 4.7 散熱效果觀察  64 4.8 文獻比較  65 第五章 結論  66 參考文獻  67 附錄  71

    [1] Hiraa, M. Harada, and T. Nagatsuma, “Multi-Gigabit/s Wireless Links Using Millimeter-Wave Photonic Techniques,”in Tech. Dig. Microwave Photonics 2001, pp. 77-80, 2001.
    [2] J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” JLT, vol. 23, no. 2, pp. 703-723, 2005.
    [3] G. Maury, A. Hilt, T. Berceli, B. Cabon, and A. Vilcot, “Microwave Frequency Conversion Methods by Optical Interferometer and Photodiode,” IEEE Trans. on Microwave Theory and Techniques, Vol. 45, No. 8, pp. 1481-1485, 1997.
    [4] D. Novak, “Fiber Optics in Wireless Applications,” OFC 2004 Short Course 217, 2004.
    [5] J. J. O’Reilly, P. M. Lane, and M. H. Capstick , “Optical Generation and Delivery of Modulated mm-waves for Mobile Communications,” in Analogue Optical Fiber Communications, B. Wilson, Z. Ghassemlooy, and I. Darwazeh, ed. (The Institute of Electrical Engineers, London, 1995).
    [6] Y. Koike, “POF Technology for the 21st Century,” in Proceedings of the Plastic Optical Fibers (POF) Conference, pp.5-8, 2001.
    [7] Jonathan Wells “Fast Than Fiber: The Future of Multi-Gb/s Wireless,” IEEE Microwave Magazine, pp. 104–112, May 2009.
    [8] J.-W. Shi, F.-M. Kuo, C.-J. Wu, C.-L. Chang, C.-Y. Liu, C.-Y. Chen, and J.-I. Chyi, “Extremely High Saturation Current-Bandwidth Product Performance of a Near-Ballistic Uni-Traveling-Carrier Photodiode with a Flip-Chip Bonding Structure,” IEEE J. of Quantum Electronics, vol. 46, pp. 80-86, Jan. 2010.
    [9] F.-M. Kuo, Y.-T. Li, J.-W. Shi, S.-N. Wang, N.-W. Chen, and C.-L. Pan, “Photonic Impulse-Radio Wireless Link at W-Band Using a Near-Ballistic Uni-Traveling-Carrier Photodiode-Based Photonic Transmitter-Mixer,” IEEE Photon. Technol. Lett., vol. 22, pp. 82-84, Jan. 2010.
    [10] J.-W. Shi, Y.-S. Wu, and Y.-S. Lin, “Near-Ballistic Uni-Traveling-Carrier Photodiode- Based V-Band Optoelectronic Mixers With Internal Up-Conversion-Gain, Wide Modulation Bandwidth, and Very High Operation Current Performance,” IEEE Photon. Technol. Lett., vol. 20, pp. 939-941, June 2008.
    [11] A. Hirata, T. Kosugi, N. Meisl, T. Shibata, T. Nagatsuma, “High-Directivity Photonic Emitter Using Photodiode Module Integrated With HEMT Amplifier for 10-Gbit/s Wireless Link,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1843-1850, Aug. 2004.
    [12] Akihiko Hirata, Tomofumi Furuta, Hiroshi Ito, and Tadao Nagatsuma, “10-Gb/s Millimeter-Wave Signal Generation Using Photodiode Bias Modulation,” Journal of Lightwave Technology, vol. 24, issue 4, pp. 1725-1731, April 2006.
    [13] H.-J. Tsai, “Design and Analysis of Integrated Photonic Transmitter with Wide Optical-to-Electrical Bandwidth for Wireless-Over-Fiber Applications,” M.S. thesis, National Central University, Taiwan, 2009.
    [14] Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic uni-traveling carrier photodiodes at W-band,” IEEE Photon. Technol. Lett., vol. 20, no. 7, pp. 1160–1162, July 2008.
    [15] F.-M. Kuo, Y.-L. Ho, J.-W. Shi, N.-W. Chen, W.-J. J., C.-T. Lin, J. Chen, C.-L. Peng, and C. Sien, “12.5-Gb/s wireless data transmission by using bias modulation of NBUTC-PD based W-band photonic transmitter-mixer,” in Optical Fiber Communication (OFC) Conference, pp. 1-3, March 2010.
    [16] C. A. Balanis Advanced Engineering Electromagnetics, John Wiley & Sons, Inc., New York,USA, 1989.
    [17] G. E. Ponchak and R. N. Simons, ‘‘A New Rectangular Waveguide to Coplanar Waveguide Transition,’’ 1990 IEEE MTT-S Int. Microwave Symp. Dig., Dallas, TX, vol. 1, pp. 491-492, May 1990.
    [18] T.-H. Lin and R.-B. Wu, “CPW to waveguide transition with tapered slotline probe,” IEEE Microwave and Wireless Components Letters, vol. 11, no. 7, pp. 314−316, July 2001.
    [19] V. S. Möttönen, “Wideband coplanar waveguide-to-rectangular waveguide transition using fin-line taper,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 2, pp. 119−121, Feb. 2005.
    [20] N. Kaneda, Y. Qian and T. Itoh, “A novel Yagi–Uda dipole array fed by a microstrip-to-CPS transition,” presented at the 1998 Asia-Pacific Microwave Conference (APMC’98), Yokohama, Japan, pp. 1413–1416, December 1998.
    [21] H. Yagi, “Beam Transmission of Ultra Short Waves,” Proc. IRE, vol. 26, pp. 715–741, June 1928. Also Proc. IEEE, vol. 72, No. 5, pp. 634–645, May 1984; Proc. IEEE, vol. 85, no. 11, pp. 1864–1874, November 1997.
    [22] N. Kaneda, Y. Qian, T. Itoh, “Broadband CPW-to-Waveguide Transition Using Quasi-Yagi Antenna,” IEEE MTT-S Int. Microwave Symp. Dig. vol.2, pp. 617-620, June 2000.
    [23] D. M. Pozar: Microwave engineering, 2nd ed., John Wiley & Sons, Inc., New York, 1998.
    [24] N.-W. Chen, H.-J. Tsai, F.-M. Kuo, and J.-W. Shi, “High-Speed W-Band Integrated Photonic Transmitter for Radio-Over-Fiber Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no.4, pp. 978-986, April 2011.
    [25] OML, Inc., “Harmonic Mixer Datasheet for WR-10, W-Band, 75-110 GHz” Internet: www.omlinc.com/products/spectrum-analyzer-extension-module/wr-10-75-110-ghz.html
    [26] M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, A. Akrout, and D. Jäger, “60GHz Photonic Millmeter-Wave Link for Short to Medium Range Wireless Transmission up to 10.5Gb/s,” IEEE J.Lightwave Technol., vol. 26, no. 15, pp. 2424-2429, Aug. 2008.
    [27] H.-J. Song, K. Ajito, A. Wakatsuki, Y. Muramoto, N. Kukutsu, Y. Kado, and T. Nagatsuma, “Terahertz wireless communication link at 300 GHz,” in IEEE Topical Meeting on Microwave Photonics (MWP), pp. 42-45, Oct. 2010.
    [28] H.-J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8 Gbit/s wireless data transmission at 250 GHz,” Electronics Letters, vol. 45, pp. 1121-1122, 2009.
    [29] A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß “Millimeter-Wave Photonic Components for Broadband Wireless Systems,” IEEE Trans. Microwave Theory Tech., vol. 58, pp. 3071-3082, Nov., 2010.
    [30] A. Stohr, “10 Gbit/s wireless transmission using millimeter-wave over optical fiber systems,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, pp. 1-3, March 2011.

    QR CODE
    :::