| 研究生: |
黃榮星 Jung-hsing Huang |
|---|---|
| 論文名稱: |
應用於Radio-over-Fiber系統之超高速微波光子發射器 Ultra-High-Speed Microwave Integrated Photonic Transmitter for Radio-Over-Fiber Applications |
| 指導教授: |
凃文化
Wen-hua Tu 陳念偉 Nan-wei Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 微波光子發射器 、近彈道單載子光檢測器 、光電檢測器 、光二極體 、光子積體發射器 、超高速無線傳輸 、光纖無線通信 、W頻段 |
| 外文關鍵詞: | NBUTC-PD, Microwave Integrated Photonic Transmitter, ultra-high-speed wireless data rate, RoF, Radio-over-Fiber, W-band, photonic diode, photodetector |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以微波光子通信系統(microwave photonic communication systems)中的Radio-over-Fiber (RoF)系統應用為主,使用近彈道單載子光檢測器(near-ballistic uni-traveling-carrier photodiode, NBUTC-PD)此高速寬頻且可供光電轉換效果之主動積體元件與被動電路整合,實現出具有超高速無線傳輸功能之毫米波發射器。
為設計高速無線傳輸系統之發射端,於論文中提出NBUTC-PD之等效電路,以模擬方式即提供光電轉換與中頻響應之準確預測,提升設計效率與節省成本;將上述與射頻扼流器(RF-choke)、W頻帶帶通濾波器(W-band bandpass filter)、平面電路至導波管(Waveguide)轉接器及號角天線(Horn Antenna)等被動電路元件整合,設計並實作出光子積體傳輸器(integrated photonic transmitter);文中亦以上述電路改良後,提出新式射頻扼流器提供元件良好散熱與提升中頻響應頻寬,有效將數位訊號無線傳輸速率提高至20 Gbit/s。
In this thesis, an integrated photonic transmitter front-end is demonstrated. In essence, the front-end circuit consists of an RF-choke, a W-band bandpass filter, an uni-planar slotline-to-waveguide transition, and a W-band horn antenna. The front-end is built with a near-ballistic uni-traveling-carrier photodiode (NBUTC-PD), which exhibits an extremely broadband bandwidth as well as an ultra-wide optical-to-electrical response. It is shown that the NBUTC-PD with proper integrated front-end circuits can find applications in the Radio-over-Fiber (RoF) system for ultra-high-speed wireless data transmission.
This thesis also presents equivalent circuits to further simplify the system design procedures. The equivalent circuit of the entire system leads to reasonably accurate W-band optical-to-electrical response and intermediate frequency (IF) modulated bandwidth. For experimental demonstration, the proposed front-end is integrated with NBUTC-PD through flip-chip bonding for realization of a W-band integrated photonic transmitter. Since the wide optical-to-electrical bandwidth (35 GHz) as well as broad IF modulated bandwidth (25 GHz), the proposed photonic transmitter is of a high data rate up to 20 Gbit/s and expected to find applications in the broadband wireless-over-fiber system.
[1] Hiraa, M. Harada, and T. Nagatsuma, “Multi-Gigabit/s Wireless Links Using Millimeter-Wave Photonic Techniques,”in Tech. Dig. Microwave Photonics 2001, pp. 77-80, 2001.
[2] J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” JLT, vol. 23, no. 2, pp. 703-723, 2005.
[3] G. Maury, A. Hilt, T. Berceli, B. Cabon, and A. Vilcot, “Microwave Frequency Conversion Methods by Optical Interferometer and Photodiode,” IEEE Trans. on Microwave Theory and Techniques, Vol. 45, No. 8, pp. 1481-1485, 1997.
[4] D. Novak, “Fiber Optics in Wireless Applications,” OFC 2004 Short Course 217, 2004.
[5] J. J. O’Reilly, P. M. Lane, and M. H. Capstick , “Optical Generation and Delivery of Modulated mm-waves for Mobile Communications,” in Analogue Optical Fiber Communications, B. Wilson, Z. Ghassemlooy, and I. Darwazeh, ed. (The Institute of Electrical Engineers, London, 1995).
[6] Y. Koike, “POF Technology for the 21st Century,” in Proceedings of the Plastic Optical Fibers (POF) Conference, pp.5-8, 2001.
[7] Jonathan Wells “Fast Than Fiber: The Future of Multi-Gb/s Wireless,” IEEE Microwave Magazine, pp. 104–112, May 2009.
[8] J.-W. Shi, F.-M. Kuo, C.-J. Wu, C.-L. Chang, C.-Y. Liu, C.-Y. Chen, and J.-I. Chyi, “Extremely High Saturation Current-Bandwidth Product Performance of a Near-Ballistic Uni-Traveling-Carrier Photodiode with a Flip-Chip Bonding Structure,” IEEE J. of Quantum Electronics, vol. 46, pp. 80-86, Jan. 2010.
[9] F.-M. Kuo, Y.-T. Li, J.-W. Shi, S.-N. Wang, N.-W. Chen, and C.-L. Pan, “Photonic Impulse-Radio Wireless Link at W-Band Using a Near-Ballistic Uni-Traveling-Carrier Photodiode-Based Photonic Transmitter-Mixer,” IEEE Photon. Technol. Lett., vol. 22, pp. 82-84, Jan. 2010.
[10] J.-W. Shi, Y.-S. Wu, and Y.-S. Lin, “Near-Ballistic Uni-Traveling-Carrier Photodiode- Based V-Band Optoelectronic Mixers With Internal Up-Conversion-Gain, Wide Modulation Bandwidth, and Very High Operation Current Performance,” IEEE Photon. Technol. Lett., vol. 20, pp. 939-941, June 2008.
[11] A. Hirata, T. Kosugi, N. Meisl, T. Shibata, T. Nagatsuma, “High-Directivity Photonic Emitter Using Photodiode Module Integrated With HEMT Amplifier for 10-Gbit/s Wireless Link,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1843-1850, Aug. 2004.
[12] Akihiko Hirata, Tomofumi Furuta, Hiroshi Ito, and Tadao Nagatsuma, “10-Gb/s Millimeter-Wave Signal Generation Using Photodiode Bias Modulation,” Journal of Lightwave Technology, vol. 24, issue 4, pp. 1725-1731, April 2006.
[13] H.-J. Tsai, “Design and Analysis of Integrated Photonic Transmitter with Wide Optical-to-Electrical Bandwidth for Wireless-Over-Fiber Applications,” M.S. thesis, National Central University, Taiwan, 2009.
[14] Y.-S. Wu and J.-W. Shi, “Dynamic analysis of high-power and high-speed near-ballistic uni-traveling carrier photodiodes at W-band,” IEEE Photon. Technol. Lett., vol. 20, no. 7, pp. 1160–1162, July 2008.
[15] F.-M. Kuo, Y.-L. Ho, J.-W. Shi, N.-W. Chen, W.-J. J., C.-T. Lin, J. Chen, C.-L. Peng, and C. Sien, “12.5-Gb/s wireless data transmission by using bias modulation of NBUTC-PD based W-band photonic transmitter-mixer,” in Optical Fiber Communication (OFC) Conference, pp. 1-3, March 2010.
[16] C. A. Balanis Advanced Engineering Electromagnetics, John Wiley & Sons, Inc., New York,USA, 1989.
[17] G. E. Ponchak and R. N. Simons, ‘‘A New Rectangular Waveguide to Coplanar Waveguide Transition,’’ 1990 IEEE MTT-S Int. Microwave Symp. Dig., Dallas, TX, vol. 1, pp. 491-492, May 1990.
[18] T.-H. Lin and R.-B. Wu, “CPW to waveguide transition with tapered slotline probe,” IEEE Microwave and Wireless Components Letters, vol. 11, no. 7, pp. 314−316, July 2001.
[19] V. S. Möttönen, “Wideband coplanar waveguide-to-rectangular waveguide transition using fin-line taper,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 2, pp. 119−121, Feb. 2005.
[20] N. Kaneda, Y. Qian and T. Itoh, “A novel Yagi–Uda dipole array fed by a microstrip-to-CPS transition,” presented at the 1998 Asia-Pacific Microwave Conference (APMC’98), Yokohama, Japan, pp. 1413–1416, December 1998.
[21] H. Yagi, “Beam Transmission of Ultra Short Waves,” Proc. IRE, vol. 26, pp. 715–741, June 1928. Also Proc. IEEE, vol. 72, No. 5, pp. 634–645, May 1984; Proc. IEEE, vol. 85, no. 11, pp. 1864–1874, November 1997.
[22] N. Kaneda, Y. Qian, T. Itoh, “Broadband CPW-to-Waveguide Transition Using Quasi-Yagi Antenna,” IEEE MTT-S Int. Microwave Symp. Dig. vol.2, pp. 617-620, June 2000.
[23] D. M. Pozar: Microwave engineering, 2nd ed., John Wiley & Sons, Inc., New York, 1998.
[24] N.-W. Chen, H.-J. Tsai, F.-M. Kuo, and J.-W. Shi, “High-Speed W-Band Integrated Photonic Transmitter for Radio-Over-Fiber Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no.4, pp. 978-986, April 2011.
[25] OML, Inc., “Harmonic Mixer Datasheet for WR-10, W-Band, 75-110 GHz” Internet: www.omlinc.com/products/spectrum-analyzer-extension-module/wr-10-75-110-ghz.html
[26] M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, A. Akrout, and D. Jäger, “60GHz Photonic Millmeter-Wave Link for Short to Medium Range Wireless Transmission up to 10.5Gb/s,” IEEE J.Lightwave Technol., vol. 26, no. 15, pp. 2424-2429, Aug. 2008.
[27] H.-J. Song, K. Ajito, A. Wakatsuki, Y. Muramoto, N. Kukutsu, Y. Kado, and T. Nagatsuma, “Terahertz wireless communication link at 300 GHz,” in IEEE Topical Meeting on Microwave Photonics (MWP), pp. 42-45, Oct. 2010.
[28] H.-J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8 Gbit/s wireless data transmission at 250 GHz,” Electronics Letters, vol. 45, pp. 1121-1122, 2009.
[29] A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, and M. Weiß “Millimeter-Wave Photonic Components for Broadband Wireless Systems,” IEEE Trans. Microwave Theory Tech., vol. 58, pp. 3071-3082, Nov., 2010.
[30] A. Stohr, “10 Gbit/s wireless transmission using millimeter-wave over optical fiber systems,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, pp. 1-3, March 2011.