跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張詔傑
Zhao-Jie zHANG
論文名稱: 透過機器學習加速探索有前景的紫質染料用於染料敏化太陽能電池
Expedited Exploration of Prospective Porphyrin Dye for Dye-Sensitized Solar Cells by Machine Learning
指導教授: 蔡惠旭
Hui-Hsu Gavin Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 123
中文關鍵詞: 紫質機器學習染料敏化太陽能電池理論計算密度泛函理論
外文關鍵詞: Porphyrin, Machine Learning, Dye-Sensitized Solar Cells, theoretical calculation, DFT
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 染料敏化太陽能電池(DSSC)由於其成本效益、靈活性和理想的穩定性而作為
    一種有前景的光伏技術引起了廣泛關注。然而,由於染料分子結構和元件性能之
    間的複雜關係,設計高效、穩定的 DSSC 染料敏化劑仍然具有挑戰性。在這項
    研究中,我們提出了一種專門為鋅基的紫質染料敏化劑量身定製的可靠且可解釋
    的定量結構-性質關係(QSPR)模型。通過將機器學習技術(ML)與密度泛函理論
    (DFT) 計算相結合,我們構建了一個包含 140 個分子的資料集。 ML 模型經過
    訓練來預測功率轉換效率 (PCE),並使用 Shapley Additive Explanations Theory 進
    一步解釋其預測。開發的模型表現出卓越的準確性,通過 10 折交叉驗證並利用
    bagging 技術,均方根誤差 (RMSE) 達到 1.09%。利用這個模型,我們對來自眾
    所周知且容易獲得的供體和受體的大量分子進行了計算機虛擬篩選。結果,我們
    使用這種方法成功鑑定了九種有前景的高 PCE 鋅基的紫質染料。此外,使用
    Shapley Additive Explanations Theory 對預測模型的解釋使我們能夠推導出有意義
    的化學規則,這有助於製定 DSSC 實際應用的鋅基紫質染料分子設計原則。


    Dye-sensitized solar cells (DSSCs) have attracted significant attention as a
    promising photovoltaic technology due to their cost-effectiveness, flexibility, and
    desirable stability. However, designing efficient and stable DSSC dye sensitizers
    remains a challenge due to the sophisticated relationship between molecular structure
    and device performance. In this study, we propose a reliable and interpretable
    quantitative structure-property relationship (QSPR) model specifically tailored for
    zinc-based porphyrin sensitizers. By combining machine learning technique with
    density functional theory (DFT) calculations, we constructed a dataset comprising 140
    data. The ML model was trained to predict the power conversion efficiency (PCE) and
    its predictions were further interpreted using the Shapley Additive Explanations Theory.
    The developed model demonstrated remarkable accuracy with a root mean square error
    (RMSE) of 1.09% achieved through 10-fold cross-validation and utilizing bagging
    technique. Leveraging this model, we performed in silico virtual screening of a large
    number of molecules derived from well-known and readily available donors and
    acceptors. As a result, we successfully identified nine promising zinc-based porphyrin
    dyes with high PCE using this approach. Additionally, the interpretation of the
    prediction model using the Shapley Additive Explanations Theory allowed us to deduce
    III
    meaningful chemical rules, which can contribute to the formulation of design principles
    for practical applications of DSSCs utilizing zinc-based porphyrin dyes.

    Contents 摘要 ........................................................................................................................... I Abstract ..................................................................................................................... II Acknowledgment .................................................................................................... IV List of Figures ......................................................................................................... VI List of Tables .......................................................................................................... VII Chapter 1—Introduction ............................................................................................ 1 Chapter 2—Computational Methods.......................................................................... 9 2.1 The construction of the database ...................................................................... 9 2.2 Working Principles and Molecular Descriptors .............................................. 10 2.3 Quantum chemical calculations ...................................................................... 15 2.4 Algorithm Description ................................................................................... 25 2.5 Machine learning algorithms .......................................................................... 27 2.5-1 Light Gradient Boosting Machine (LGBM) ..................................... 27 2.5-2 Support Vector Regression (SVR) .................................................... 29 2.5-3 Artificial Neural Network (ANN) ..................................................... 30 2.5-4 Convolutional Neural Networks (CNN) ........................................... 32 Chapter 3—Results and Discussion ......................................................................... 34 3.1 Model Performance Evaluation ...................................................................... 34 3.1-1. Performance of Predictive Models in terms of MDS-A.................... 35 3.1-2. Performance of Predictive Models in terms of MDS-B.................... 38 3.1-3. Performance of Predictive Models in terms of MDS-C ................... 41 3.3. In Silico Virtual Screening of Candidate Zn-based Porphyrins.................... 51 Chapter 4—Conclusion ........................................................................................... 53 Supporting Information ........................................................................................... 56 References (Thesis) ................................................................................................102

    References (Thesis)
    1. O'Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dyesensitized
    colloidal TiO2 films. Nature 1991, 353 (6346), 737-740.
    2. Chen, C. Y.; Kuo, T. Y.; Huang, C. W.; Jian, Z. H.; Hsiao, P. T.; Wang, C.
    L.; Lin, J. C.; Chen, C. Y.; Chen, C. H.; Tung, Y. L., Thermal and angular
    dependence of next‐generation photovoltaics under indoor lighting. Progress in
    Photovoltaics: Research and Applications 2020, 28 (2), 111-121.
    3. Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.;
    Hua, J.; Zakeeruddin, S. M.; Moser, J.-E.; Grätzel, M., Dye-sensitized solar cells
    for efficient power generation under ambient lighting. Nature Photonics 2017, 11 (6),
    372-378.
    4. Zeng, K.; Chen, Y.; Zhu, W.-H.; Tian, H.; Xie, Y., Efficient solar cells based
    on concerted companion dyes containing two complementary components: an
    alternative approach for cosensitization. Journal of the American Chemical Society
    2020, 142 (11), 5154-5161.
    5. Zeng, K.; Tong, Z.; Ma, L.; Zhu, W.-H.; Wu, W.; Xie, Y., Molecular
    engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar
    cells. Energy & Environmental Science 2020, 13 (6), 1617-1657.
    6. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.;
    Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel,
    M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular
    engineering of porphyrin sensitizers. Nature Chemistry 2014, 6 (3), 242-247.
    7. Kumar, A.; Kumar, P., Prediction of power conversion efficiency of phenothiazinebased
    dye-sensitized solar cells using Monte Carlo method with index of ideality of
    correlation. SAR and QSAR in Environmental Research 2021, 32 (10), 817-834.
    8. Wen, Y.; Fu, L.; Li, G.; Ma, J.; Ma, H., Accelerated Discovery of Potential
    Organic Dyes for Dye‐Sensitized Solar Cells by Interpretable Machine Learning
    Models and Virtual Screening. Solar RRL 2020, 4 (6), 2000110.
    9. Fan, C.; Springborg, M.; Feng, Y., Application of an inverse-design method to
    optimizing porphyrins in dye-sensitized solar cells. Physical Chemistry Chemical
    Physics 2019, 21 (10), 5834-5844.
    10. Li, H.; Cui, Y.; Liu, Y.; Li, W.; Shi, Y.; Fang, C.; Li, H.; Gao, T.;
    Hu, L.; Lu, Y., Ensemble learning for overall power conversion efficiency of the allorganic
    dye-sensitized solar cells. IEEE Access 2018, 6, 34118-34126.
    11. Li, H.; Zhong, Z.; Li, L.; Gao, R.; Cui, J.; Gao, T.; Hu, L. H.; Lu, Y.;
    Su, Z.-M.; Li, H., A cascaded QSAR model for efficient prediction of overall power
    conversion efficiency of all-organic dye-sensitized solar cells. Journal of
    103
    Computational Chemistry 2015, 36 (14), 1036-1046.
    12. Bishop, C. M.; Nasrabadi, N. M., Pattern recognition and machine learning.
    Springer: 2006; Vol. 4.
    13. Galvao, T. L.; Novell-Leruth, G.; Kuznetsova, A.; Tedim, J.; Gomes, J. R.,
    Elucidating structure–property relationships in aluminum alloy corrosion inhibitors by
    machine learning. The Journal of Physical Chemistry C 2020, 124 (10), 5624-5635.
    14. Li, P.; Wang, Z.; Li, W.; Yuan, J.; Chen, R., Design of Thermally Activated
    Delayed Fluorescence Materials with High Intersystem Crossing Efficiencies by
    Machine Learning-Assisted Virtual Screening. The Journal of Physical Chemistry
    Letters 2022, 13 (42), 9910-9918.
    15. Liu, Y.; Yan, W.; Han, S.; Zhu, H.; Tu, Y.; Guan, L.; Tan, X., How
    machine learning predicts and explains the performance of perovskite solar cells. Solar
    RRL 2022, 6 (6), 2101100.
    16. Li, J.; Peng, Y.; Zhao, L.; Chen, G.; Zeng, L.; Wei, G.; Xu, Y., Machinelearning-
    assisted discovery of perovskite materials with high dielectric breakdown
    strength. Materials Advances 2022, 3 (23), 8639-8646.
    17. Sun, W.; Zheng, Y.; Yang, K.; Zhang, Q.; Shah, A. A.; Wu, Z.; Sun, Y.;
    Feng, L.; Chen, D.; Xiao, Z., Machine learning–assisted molecular design and
    efficiency prediction for high-performance organic photovoltaic materials. Science
    Advances 2019, 5 (11), eaay4275.
    18. Gou, F.; Jiang, X.; Li, B.; Jing, H.; Zhu, Z. J. A. A. M.; Interfaces, Salicylic
    acid as a tridentate anchoring group for azo-bridged zinc porphyrin in dye-sensitized
    solar cells. ACS Appl. Mater. Interfaces 2013, 5 (23), 12631-12637.
    19. Krishna, J. V. S.; Krishna, N. V.; Chowdhury, T. H.; Singh, S.; Bedja, I.;
    Islam, A.; Giribabu, L., Kinetics of dye regeneration in liquid electrolyte unveils
    efficiency of 10.5% in dye-sensitized solar cells. Journal of Materials Chemistry C
    2018, 6 (42), 11444-11456.
    20. Sharma, K.; Sharma, V.; Sharma, S. S., Dye-sensitized solar cells: fundamentals
    and current status. Nanoscale Research Letters 2018, 13 (1), 1-46.
    21. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
    Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.;
    Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts,
    R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg,
    J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.;
    Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega,
    N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
    Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
    Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.;
    104
    Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.;
    Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.;
    Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.;
    Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
    Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
    22. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange.
    The Journal of Chemical Physics 1993, 98 (7), 5648-5652.
    23. Petersson, G.; Al‐Laham, M. A., A complete basis set model chemistry. II. Openshell
    systems and the total energies of the first‐row atoms. 1991, 94 (9), 6081-6090.
    24. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, structures, and
    electronic properties of molecules in solution with the C‐PCM solvation model. Journal
    of Computational Chemistry 2003, 24 (6), 669-681.
    25. O'boyle, N. M.; Tenderholt, A. L.; Langner, K. M., Cclib: a library for packageindependent
    computational chemistry algorithms. 2008, 29 (5), 839-845.
    26. Delley, B., An all‐electron numerical method for solving the local density
    functional for polyatomic molecules. J. Chem. Phys. 1990, 92 (1), 508-517.
    27. Delley, B., From molecules to solids with the DMol 3 approach. J. Chem. Phys.
    2000, 113 (18), 7756-7764.
    28. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation
    made simple. Phys. Rev. Lett. 1996, 77 (18), 3865.
    29. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M.
    R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of
    the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992,
    46 (11), 6671.
    30. Tsai, H.-H. G.; Hu, J.-C.; Tan, C.-J.; Sheng, Y.-C.; Chiu, C.-C., Firstprinciple
    characterization of the adsorption configurations of cyanoacrylic dyes on
    TiO2 film for dye-sensitized solar cells. J. Phys. Chem. A 2016, 120 (44), 8813-8822.
    31. Chiu, C.-C.; Sheng, Y.-C.; Lin, W.-J.; Juwita, R.; Tan, C.-J.; Tsai, H.-H. G.,
    Effects of internal electron-withdrawing moieties in D–A− π–A organic sensitizers on
    photophysical properties for DSSCs: a computational study. ACS omega 2018, 3 (1),
    433-445.
    32. Fuke, N.; Hoch, L. B.; Koposov, A. Y.; Manner, V. W.; Werder, D. J.;
    Fukui, A.; Koide, N.; Katayama, H.; Sykora, M., CdSe quantum-dot-sensitized
    solar cell with∼ 100% internal quantum efficiency. ACS Nano 2010, 4 (11), 6377-6386.
    33. Lu, T.-F.; Li, W.; Bai, F.-Q.; Jia, R.; Chen, J.; Zhang, H.-X., Anionic
    ancillary ligands in cyclometalated Ru (II) complex sensitizers improve photovoltaic
    efficiency of dye-sensitized solar cells: insights from theoretical investigations. J. Mater.
    Chem. A 2017, 5 (30), 15567-15577.
    105
    34. Chaitanya, K.; Ju, X.-H.; Heron, B. M., Theoretical study on the light harvesting
    efficiency of zinc porphyrin sensitizers for DSSCs. RSC Adv. 2014, 4 (51), 26621-
    26634.
    35. Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.;
    Murata, S.; Arakawa, H.; Tachiya, M., Efficiencies of electron injection from excited
    N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3)
    films. J. Phys. Chem. B 2004, 108 (15), 4818-4822.
    36. Marcus, R. A., On the theory of oxidation‐reduction reactions involving electron
    transfer. I. J. Chem. Phys. 1956, 24 (5), 966-978.
    37. Marcus, R. A., On the Theory of Electron‐Transfer Reactions. VI. Unified
    Treatment for Homogeneous and Electrode Reactions. J. Chem. Phys. 2004, 43 (2),
    679-701.
    38. Lopez-Estrada, O.; Laguna, H. G.; Barrueta-Flores, C.; Amador-Bedolla, C.,
    Reassessment of the four-point approach to the electron-transfer Marcus–Hush theory.
    ACS Omega 2018, 3 (2), 2130-2140.
    39. Pearson, R. G., Absolute electronegativity and absolute hardness of Lewis acids
    and bases. J. Am. Chem. Soc. 1985, 107 (24), 6801-6806.
    40. Bredas, J.-L., Mind the gap! Mater. Horiz. 2014, 1 (1), 17-19.
    41. Chattaraj, P. K.; Sarkar, U.; Roy, D. R., Electrophilicity Index. Chem. Rev. 2006,
    106 (6), 2065-2091.
    42. Kokalj, A., On the HSAB based estimate of charge transfer between adsorbates
    and metal surfaces. Chemical Physics 2012, 393 (1), 1-12.
    43. Hsu, C.-P., The Electronic Couplings in Electron Transfer and Excitation Energy
    Transfer. Accounts of Chemical Research 2009, 42 (4), 509-518.
    44. Koopmans, T., Über die Zuordnung von Wellenfunktionen und Eigenwerten zu
    den Einzelnen Elektronen Eines Atoms. Physica 1934, 1 (1), 104-113.
    45. Lundberg, S. M.; Lee, S.-I., A unified approach to interpreting model predictions.
    Advances in neural information processing systems 2017, 30.
    46. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu,
    T.-Y., Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
    information processing systems 2017, 30.
    47. Awad, M.; Khanna, R.; Awad, M.; Khanna, R., Support vector regression.
    Efficient learning machines: Theories, concepts, and applications for engineers and
    system designers 2015, 67-80.
    48. Dongare, A.; Kharde, R.; Kachare, A. D., Introduction to artificial neural
    network. International Journal of Engineering and Innovative Technology (IJEIT) 2012,
    2 (1), 189-194.
    49. Albawi, S.; Mohammed, T. A.; Al-Zawi, S. In Understanding of a convolutional
    106
    neural network, 2017 international conference on engineering and technology (ICET),
    Ieee: 2017; pp 1-6.
    50. Baumann, A.; Curiac, C.; Delcamp, J. H., The Hagfeldt Donor and Use of Next‐
    Generation Bulky Donor Designs in Dye‐Sensitized Solar Cells. ChemSusChem 2020,
    13 (10), 2503-2512.
    51. Han, M.-L.; Zhu, Y.-Z.; Liu, S.; Liu, Q.-L.; Ye, D.; Wang, B.; Zheng, J.-
    Y., The improved photovoltaic performance of phenothiazine-dithienopyrrole based
    dyes with auxiliary acceptors. Journal of Power Sources 2018, 387, 117-125.
    52. Lin, C.-Y.; Lo, C.-F.; Luo, L.; Lu, H.-P.; Hung, C.-S.; Diau, E. W.-G.,
    Design and Characterization of Novel Porphyrins with Oligo(phenylethylnyl) Links of
    Varied Length for Dye-Sensitized Solar Cells: Synthesis and Optical, Electrochemical,
    and Photovoltaic Investigation. The Journal of Physical Chemistry C 2009, 113 (2),
    755-764.
    53. Duvva, N.; Prasanthkumar, S.; Giribabu, L., Influence of strong electron
    donating nature of phenothiazine on A3B-type porphyrin based dye sensitized solar
    cells. Solar Energy 2019, 184, 620-627.
    54. Li, S.; Zhang, Y.; Mei, S.; Kong, X.; Yang, M.; Hu, Z.; Wu, W.; He,
    J.; Tan, H., A molecular engineering strategy of phenylamine-based zinc-porphyrin
    dyes for dye-sensitized solar cells: synthesis, characteristics, and structure–
    performance relationships. ACS Applied Energy Materials 2021, 4 (9), 9267-9275.
    55. Wu, C.-H.; Pan, T.-Y.; Hong, S.-H.; Wang, C.-L.; Kuo, H.-H.; Chu, Y.-
    Y.; Diau, E. W.-G.; Lin, C.-Y., A fluorene-modified porphyrin for efficient dyesensitized
    solar cells. Chemical Communications 2012, 48 (36), 4329-4331.
    56. Lu, H.-P.; Mai, C.-L.; Tsia, C.-Y.; Hsu, S.-J.; Hsieh, C.-P.; Chiu, C.-L.;
    Yeh, C.-Y.; Diau, E. W.-G., Design and characterization of highly efficient porphyrin
    sensitizers for green see-through dye-sensitized solar cells. Physical Chemistry
    Chemical Physics 2009, 11 (44), 10270-10274.
    57. Cabau, L.; Kumar, C. V.; Moncho, A.; Clifford, J. N.; López, N.;
    Palomares, E., A single atom change “switches-on” the solar-to-energy conversion
    efficiency of Zn-porphyrin based dye sensitized solar cells to 10.5%. Energy &
    Environmental Science 2015, 8 (4), 1368-1375.
    58. Wu, C.-H.; Chen, M.-C.; Su, P.-C.; Kuo, H.-H.; Wang, C.-L.; Lu, C.-Y.;
    Tsai, C.-H.; Wu, C.-C.; Lin, C.-Y., Porphyrins for efficient dye-sensitized solar cells
    covering the near-IR region. Journal of Materials Chemistry A 2014, 2 (4), 991-999.
    59. Lu, J.; Xu, X.; Cao, K.; Cui, J.; Zhang, Y.; Shen, Y.; Shi, X.; Liao, L.;
    Cheng, Y.; Wang, M., D–π–A structured porphyrins for efficient dye-sensitized solar
    cells. Journal of Materials Chemistry A 2013, 1 (34), 10008-10015.
    60. Lu, J.; Li, H.; Liu, S.; Chang, Y.-C.; Wu, H.-P.; Cheng, Y.; Diau, E. W.-
    107
    G.; Wang, M., Novel porphyrin-preparation, characterization, and applications in solar
    energy conversion. Physical Chemistry Chemical Physics 2016, 18 (9), 6885-6892.
    61. Chang, Y.-C.; Wang, C.-L.; Pan, T.-Y.; Hong, S.-H.; Lan, C.-M.; Kuo,
    H.-H.; Lo, C.-F.; Hsu, H.-Y.; Lin, C.-Y.; Diau, E. W.-G., A strategy to design
    highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chemical
    Communications 2011, 47 (31), 8910-8912.
    62. Tanaka, M.; Hayashi, S.; Eu, S.; Umeyama, T.; Matano, Y.; Imahori, H.,
    Novel unsymmetrically π-elongated porphyrin for dye-sensitized TiO2 cells. Chemical
    communications 2007, 2069-2071.
    63. Hayashi, S.; Matsubara, Y.; Eu, S.; Hayashi, H.; Umeyama, T.; Matano,
    Y.; Imahori, H., Fused five-membered porphyrin for dye-sensitized solar cells.
    Chemistry letters 2008, 37 (8), 846-847.
    64. Hayashi, S.; Tanaka, M.; Hayashi, H.; Eu, S.; Umeyama, T.; Matano, Y.;
    Araki, Y.; Imahori, H., Naphthyl-fused π-elongated porphyrins for dye-sensitized TiO2
    cells. The Journal of Physical Chemistry C 2008, 112 (39), 15576-15585.
    65. Cariello, M.; Abdalhadi, S. M.; Yadav, P.; Decoppet, J.-D.; Zakeeruddin, S.
    M.; Grätzel, M.; Hagfeldt, A.; Cooke, G. J. D. T., An investigation of the roles furan
    versus thiophene π-bridges play in donor–π-acceptor porphyrin based DSSCs. Dalton
    Transactions 2018, 47 (18), 6549-6556.
    66. Eu, S.; Hayashi, S.; Umeyama, T.; Oguro, A.; Kawasaki, M.; Kadota, N.;
    Matano, Y.; Imahori, H., Effects of 5-Membered Heteroaromatic Spacers on Structures
    of Porphyrin Films and Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells. The
    Journal of Physical Chemistry C 2007, 111 (8), 3528-3537.
    67. Hsieh, C.-P.; Lu, H.-P.; Chiu, C.-L.; Lee, C.-W.; Chuang, S.-H.; Mai, C.-
    L.; Yen, W.-N.; Hsu, S.-J.; Diau, E. W.-G.; Yeh, C.-Y., Synthesis and
    characterization of porphyrin sensitizers with various electron-donating substituents for
    highly efficient dye-sensitized solar cells. Journal of Materials Chemistry 2010, 20 (6),
    1127-1134.
    68. Song, H.; Li, X.; Ågren, H.; Xie, Y., Branched and linear alkoxy chainswrapped
    push-pull porphyrins for developing efficient dye-sensitized solar cells. Dyes
    and Pigments 2017, 137, 421-429.
    69. Lee, M. J.; Seo, K. D.; Song, H. M.; Kang, M. S.; Eom, Y. K.; Kang, H.
    S.; Kim, H. K., Novel D-π-A system based on zinc-porphyrin derivatives for highly
    efficient dye-sensitised solar cells. Tetrahedron Letters 2011, 52 (30), 3879-3882.
    70. Tang, Y.; Wang, Y.; Li, X.; Ågren, H.; Zhu, W.-H.; Xie, Y., Porphyrins
    containing a triphenylamine donor and up to eight alkoxy chains for dye-sensitized
    solar cells: a high efficiency of 10.9%. ACS Applied Materials & Interfaces 2015, 7
    (50), 27976-27985.
    108
    71. Jia, H.-L.; Zhang, M.-D.; Ju, Z.-M.; Zheng, H.-G.; Ju, X.-H., Picolinic acid
    as an efficient tridentate anchoring group adsorbing at Lewis acid sites and Brønsted
    acid sites of the TiO2 surface in dye-sensitized solar cells. Journal of Materials
    Chemistry A 2015, 3 (28), 14809-14816.
    72. Jia, H.-L.; Zhang, M.-D.; Yan, W.; Ju, X.-H.; Zheng, H.-G., Effects of
    structural optimization on the performance of dye-sensitized solar cells: spirobifluorene
    as a promising building block to enhance Voc. Journal of Materials Chemistry A 2016,
    4 (30), 11782-11788.
    73. Xie, Y.; Tang, Y.; Wu, W.; Wang, Y.; Liu, J.; Li, X.; Tian, H.; Zhu, W.-
    H., Porphyrin Cosensitization for a Photovoltaic Efficiency of 11.5%: A Record for
    Non-Ruthenium Solar Cells Based on Iodine Electrolyte. Journal of the American
    Chemical Society 2015, 137 (44), 14055-14058.
    74. Lu, Y.; Song, H.; Li, X.; Ågren, H.; Liu, Q.; Zhang, J.; Zhang, X.; Xie,
    Y., Multiply wrapped porphyrin dyes with a phenothiazine donor: a high efficiency of
    11.7% achieved through a synergetic coadsorption and cosensitization approach. ACS
    Appl. Mater. Interfaces 2019, 11 (5), 5046-5054.
    75. Liu, Y.; Xiang, N.; Feng, X.; Shen, P.; Zhou, W.; Weng, C.; Zhao, B.;
    Tan, S., Thiophene-linked porphyrin derivatives for dye-sensitized solar cells.
    Chemical communications 2009, (18), 2499-2501.
    76. Wang, Y.; Xu, L.; Wei, X.; Li, X.; Ågren, H.; Wu, W.; Xie, Y., 2-
    Diphenylaminothiophene as the donor of porphyrin sensitizers for dye-sensitized solar
    cells. New Journal of Chemistry 2014, 38 (7), 3227-3235.
    77. Duvva, N.; Gangada, S.; Chitta, R.; Giribabu, L., Bis(4′-tert-butylbiphenyl-4-
    yl)aniline (BBA)-substituted A3B zinc porphyrin as light harvesting material for
    conversion of light energy to electricity. 2020, 24 (10), 1189-1197.
    78. Gangadhar, P. S.; Gonuguntla, S.; Madanaboina, S.; Islavath, N.; Pal, U.;
    Giribabu, L., Unravelling the impact of thiophene auxiliary in new porphyrin sensitizers
    for high solar energy conversion. Journal of Photochemistry & Photobiology A:
    Chemistry 2020, 392, 112408.
    79. Yang, G.; Tang, Y.; Li, X.; Ågren, H.; Xie, Y., Efficient solar cells based on
    porphyrin dyes with flexible chains attached to the auxiliary benzothiadiazole acceptor:
    suppression of dye aggregation and the effect of distortion. ACS Appl. Mater. Interfaces
    2017, 9 (42), 36875-36885.
    80. Song, H.; Tang, W.; Zhao, S.; Liu, Q.; Xie, Y., Porphyrin sensitizers
    containing an auxiliary benzotriazole acceptor for dye-sensitized solar cells: Effects of
    steric hindrance and cosensitization. Dyes and Pigments 2018, 155, 323-331.
    81. Hart, A. S.; Kc, C. B.; Gobeze, H. B.; Sequeira, L. R.; D’Souza, F.,
    Porphyrin-sensitized solar cells: effect of carboxyl anchor group orientation on the cell
    109
    performance. ACS Appl. Mater. Interfaces 2013, 5 (11), 5314-5323.
    82. Wei, T.; Sun, X.; Li, X.; Ågren, H.; Xie, Y., Systematic investigations on the
    roles of the electron acceptor and neighboring ethynylene moiety in porphyrins for dyesensitized
    solar cells. ACS Applied Materials & Interfaces 2015, 7 (39), 21956-21965.
    83. Higashino, T.; Fujimori, Y.; Sugiura, K.; Tsuji, Y.; Ito, S.; Imahori, H.,
    Tropolone as a high‐performance robust anchoring group for dye‐sensitized solar cells.
    Angewandte Chemie 2015, 127 (31), 9180-9184.
    84. Wang, Y.; Chen, B.; Wu, W.; Li, X.; Zhu, W.; Tian, H.; Xie, Y., Efficient
    solar cells sensitized by porphyrins with an extended conjugation framework and a
    carbazole donor: from molecular design to cosensitization. Angewandte Chemie 2014,
    126 (40), 10955-10959.
    85. Chang, S.; Wang, H.; Hua, Y.; Li, Q.; Xiao, X.; Wong, W.-K.; Wong,
    W. Y.; Zhu, X.; Chen, T., Conformational engineering of co-sensitizers to retard back
    charge transfer for high-efficiency dye-sensitized solar cells. Journal of Materials
    Chemistry A 2013, 1 (38), 11553-11558.
    86. Griffith, M. J.; Sunahara, K.; Wagner, P.; Wagner, K.; Wallace, G. G.;
    Officer, D. L.; Furube, A.; Katoh, R.; Mori, S.; Mozer, A. J., Porphyrins for dyesensitised
    solar cells: new insights into efficiency-determining electron transfer steps.
    Chemical Communications 2012, 48 (35), 4145-4162.
    87. He, H.; Gurung, A.; Si, L.; Sykes, A. G., A simple acrylic acid functionalized
    zinc porphyrin for cost-effective dye-sensitized solar cells. Chemical Communications
    2012, 48 (61), 7619-7621.
    88. Gou, F.; Jiang, X.; Fang, R.; Jing, H.; Zhu, Z., Strategy to Improve
    Photovoltaic Performance of DSSC Sensitized by Zinc Prophyrin Using Salicylic Acid
    as a Tridentate Anchoring Group. ACS Applied Materials & Interfaces 2014, 6 (9),
    6697-6703.
    89. Koteshwar, D.; Prasanthkumar, S.; Singh, S. P.; Chowdhury, T. H.; Bedja,
    I.; Islam, A.; Giribabu, L. J. M. C. F., Effects of methoxy group (s) on D-π-A
    porphyrin based DSSCs: efficiency enhanced by co-sensitization. Mater. Chem. Front.
    2022, 6 (5), 580-592.
    90. Zhou, W.; Zhao, B.; Shen, P.; Jiang, S.; Huang, H.; Deng, L.; Tan, S.,
    Multi-alkylthienyl appended porphyrins for efficient dye-sensitized solar cells. Dyes
    and Pigments 2011, 91 (3), 404-412.
    91. Lee, C. Y.; She, C.; Jeong, N. C.; Hupp, J. T., Porphyrin sensitized solar cells:
    TiO2 sensitization with a π-extended porphyrin possessing two anchoring groups.
    Chemical communications 2010, 46 (33), 6090-6092.
    92. Kang, M. S.; Kang, S. H.; Kim, S. G.; Choi, I. T.; Ryu, J. H.; Ju, M. J.;
    Cho, D.; Lee, J. Y.; Kim, H. K., Novel D–π–A structured Zn (ii)-porphyrin dyes
    110
    containing a bis(3,3-dimethylfluorenyl) amine moiety for dye-sensitised solar cells.
    Chemical Communications 2012, 48 (75), 9349-9351.
    93. Kang, S. H.; Choi, I. T.; Kang, M. S.; Eom, Y. K.; Ju, M. J.; Hong, J. Y.;
    Kang, H. S.; Kim, H. K., Novel D–π–A structured porphyrin dyes with diphenylamine
    derived electron-donating substituents for highly efficient dye-sensitized solar cells.
    Journal of Materials Chemistry A 2013, 1 (12), 3977-3982.
    94. Kang, M. S.; Choi, I. T.; Kim, Y. W.; You, B. S.; Kang, S. H.; Hong, J.
    Y.; Ju, M. J.; Kim, H. K., Novel D–π–A structured Zn (ii)–porphyrin dyes with bulky
    fluorenyl substituted electron donor moieties for dye-sensitized solar cells. Journal of
    Materials Chemistry A 2013, 1 (34), 9848-9852.
    95. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;
    Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M.,
    Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12
    percent efficiency. Science 2011, 334 (6056), 629-634.
    96. Ripolles-Sanchis, T.; Guo, B.-C.; Wu, H.-P.; Pan, T.-Y.; Lee, H.-W.;
    Raga, S. R.; Fabregat-Santiago, F.; Bisquert, J.; Yeh, C.-Y.; Diau, E. W.-G.,
    Design and characterization of alkoxy-wrapped push–pull porphyrins for dyesensitized
    solar cells. Chemical Communications 2012, 48 (36), 4368-4370.
    97. Masi Reddy, N.; Pan, T.-Y.; Christu Rajan, Y.; Guo, B.-C.; Lan, C.-M.;
    Wei-Guang Diau, E.; Yeh, C.-Y., Porphyrin sensitizers with π-extended pull units for
    dye-sensitized solar cells. Physical Chemistry Chemical Physics 2013, 15 (21), 8409-
    8415.
    98. Yella, A.; Mai, C. L.; Zakeeruddin, S. M.; Chang, S. N.; Hsieh, C. H.;
    Yeh, C. Y.; Grätzel, M., Molecular engineering of push–pull porphyrin dyes for highly
    efficient dye‐sensitized solar cells: The role of benzene spacers. Angewandte Chemie
    2014, 126 (11), 3017-3021.
    99. Wu, S.-L.; Lu, H.-P.; Yu, H.-T.; Chuang, S.-H.; Chiu, C.-L.; Lee, C.-W.;
    Diau, E. W.-G.; Yeh, C.-Y., Design and characterization of porphyrin sensitizers with a
    push-pull framework for highly efficient dye-sensitized solar cells. Energy &
    Environmental Science 2010, 3 (7), 949-955.

    QR CODE
    :::