| 研究生: |
蔡志陽 Chih-Yang Tsai |
|---|---|
| 論文名稱: |
I-Convergence of Korovkin Type Approximation Theorems for Unbounded Functions |
| 指導教授: |
蕭勝彥
Sen-Yen Shaw 高華隆 Hwa-Long Gau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 理想收斂 、Korovkin 近似型定理 |
| 外文關鍵詞: | Korovkin type approximation theorem, I-convergence |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文將先介紹較統計收斂與A-統計收斂更為一般化的理想收斂,研究主軸為正線性算子,並以理想收斂來討論無界連續函數空間上的Korovkin近似定理。更進一步將所討論的空間擴展至高維度算子值或實數值函數空間。
The purpose of this thesis is to study a Korovkin type approximation of unbounded functions by means of ideal convergence. The concept of ideal convergence is the generalizations of statistical convergence and A-statistical convergence. We will discuss the approximations of unbounded, operator-valued and real-valued functions with noncompact supports in R^m.
[1] K. Demirci, I-limit superior and limit inferior, Math. Commun., 6 (2001), 165-172.
[2] O. Duman, M.K. Khan, and C. Orhan, A-statistical convergence of approximating operators, Math. Inequalities and Appl., 6 (2003), 689-699.
[3] O. Duman and C. Orhan, Statistical approximation by positive linear operators, Studia Math., 161 (2004), 187-197.
[4] O. Duman and C. Orhan, Rates of A-statistical convergence of positive linear operators, Applied Math. Letters, 18 (2005), 1339-1344.
[5] E. Erkus and O. Duman, A Korovkin type approximaiton theorem in statistical sense, Studia Sci. Math. Hungar., 43 (2006), 285-294.
[6] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
[7] A.R. Freedman and J.J. Sember, Densities and summability, Pacific J. Math., 95 (1981), 293-305.
[8] A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138.
[9] P.P. Korovkin, Linear Operators and Theory of Approximation, Hindustan Publ. Comp., Delhi, 1960.
[10] P. Kostyrko, M. Macaj, and T. Salat, I-convergence, Real Anal. Exchange, 26 (2000), 669-686.
[11] J.E. Marsden and M.J. Hoffman, Elementary Classical Analysis, 2nd ed., W.H. Freeman and Comp., 1993.
[12] H.I. Miller, A measure theoretical subsequence characterization of statistical convergence, Tran. Amer. Math. Soc., 347 (1995), 1811-1819.
[13] H.I. Miller and C. Orhan, Statistical (T) rates of convergence, Glasnik Matematicki, 39 (2004), 101-110.
[14] A. Nabiev, S. Pehlivan, and M. Gurdal, On I-Cauchy sequences, Taiwanese J. Math., 11 (2007), 569-576.
[15] S.-Y. Shaw, Approximation of unbounded functions and applications to representations of semigroups, J. Approx. Theory, 28 (1980), 238-259.
[16] S.-Y. Shaw and C.-C. Yeh, Rates for approximation of unbounded functions by positive linear operators, J. Approx. Theory, 57 (1989), 278-292.
[17] H. Steinhaus, Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.