跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張惟捷
Wei-chieh Chang
論文名稱: 具高比例羧酸官能化之中孔洞材料於染料吸附及奈米金屬顆粒製備之應用
Direct Synthesis of Mesoporous Organosilicas Functionalized with Carboxylic Acid Groups: Study on Dye Adsorption and Fabrication of Metal (Ag, Pt) Nanoparticles
指導教授: 高憲明
Hsien-ming Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 188
中文關鍵詞: 中孔洞材料亞甲基藍奈米金屬羧酸官能基
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要合成兩種羧酸官能化之中孔洞材料,並分別探討羧酸官能化之中孔洞材料吸附染料亞甲基藍能力分析和吸附金屬離子加以還原成金屬奈米顆粒兩大部分。
    第一部分是利用非離子型界面活性劑F127做為模板,並利用1,3,5-trimethylbenzene (TMB)當作擴孔劑,再以tetraethyl orthosilicate (TEOS) 和carboxyethylsilanetriol sodium salt (CES)為共同矽源在酸性條件下合成孔洞大小約9-11 nm的具羧酸官能基中孔洞材料FTC-x;之後再利用該材料吸附亞甲基藍染料,最高可達 374 mg/g,並且在重覆使用上有很好的表現。
    第二部分是利用非離子型界面活性劑Brij 76為模板,利用1,2-bis(triethoxysilyl) ethane (BTEE) 和CES為共同矽源,合成具乙烷和羧酸官能基的雙官能基中孔洞材料EC-x,其中羧酸官能基含量最高可達85%;再利用該材料吸附銀、鉑兩種金屬離子,並利用熱還原法將金屬離子還原成金屬粒子,在製備金屬粒子的過程中因受到孔洞大小的空間限制及羧酸官能基的影響有效控制金屬顆粒大小約3-4 nm鉑金屬與4-6 nm銀金屬。


    Here we report two projects,based one-pot synthesis of mesoporous organosilicas functionalized with carboxylic acid group. In the first project, well-order cubic mesoporous silicas FDU-12 functionalized with various contents of carboxylic acid groups were successfully synthesized via co-condensation of tetraethyl orthosilicate (TEOS) and carboxyethylsilanetriol sodium salt (CES) under acidic conditions using Pluronic F127 triblock copolymer as template, FTC-x (x refers to the [CES/(TEOS+CES)] molar ratio). The maximum loading of CES contents into the pore wall without degrading the Fm3m mesostructure was up to 50% (base on silicon).The cage size distrubutions 9-11 nm were obtained. In this study, a variefy of techniques was adopted to charaterize the FTC-x materials, including powder X-ray diffraction, nitrogen sorption measurement, 13C CP-MAS NMR, 29Si MAS NMR, fourier transform infrared spectrometer, thermogravimetric analyzer and transmission electron microscopy. And we used FTC-x to adsorp the dye, Methylene blue. The adsorption process was carefully studied with various systematic factors, including the loading amount of CES, the quanity of methylene blue, pH of adsorption system and the reuse ability.

    The aim of the second project was to synthesize high order ethane-briged periodic mesoporous organosilicas (PMOs) functionalized with carboxylic acid groups, up to 85%, EC-x (x refers to the [CES/(BTEE+CES)] molar ratio). In the study, many techniques were used to charaterize the EC-x materials just like FTC-x. Preparation of Ag and Pt nanoparticles is important application in EC-x. TEM was employed to observe the metal particles distrubution in EC-x, caculate the metal particles’s size from wide-angle XRD with Scherrer Formula and control the particles’s size by EC-x.

    第一章 緒論 1 1-1中孔洞分子篩材料 1 1-2界面活性劑與矽酸鹽性質 5 1-2-1界面活性劑的種類 5 1-2-2微胞的形成與結構 7 1-2-3界面活性劑與矽酸鹽的交互作用31,33,34,48 10 1-3中孔洞表面修飾官能基 18 1-4相關文獻回顧 20 1-4-1 具羧酸官能基中孔洞材料發展 21 1-4-2中孔洞材料FDU-12合成與介紹 27 1-4-3中孔洞材料吸附染料的發展應用 28 1-4-4中孔洞材料吸附金屬的發展應用 30 1-5研究動機與目的 35 第二章 實驗部分 36 2-1實驗藥品 36 2-2實驗步驟 37 2-2-1合成具羧酸官能基的FTC-x與EC-x 37 2-2-2以硫酸裂解模版 40 2-2-3以鹽酸去除矽源之乙氧基 41 2-2-5利用酸鹼滴定鑑定孔洞材料的酸當量 41 2-2-6比較FTC-x除水前除水後之Solid State NMR實驗 41 2-2-7亞甲基藍檢量線配製 42 2-2-8利用FTC-x吸附最大量亞甲基藍實驗 42 2-2-9利用FTC-x在不同時間吸附亞甲基藍實驗 43 2-2-10利用FTC-x在不同pH值下吸附亞甲基藍實驗 44 2-2-11比較FTC-x物理混合與化學混合差異實驗1 44 2-2-12 FTC-x重覆使用性實驗 45 2-2-13利用EC-x吸附鉑金屬實驗 46 2-2-14利用EC-x吸附銀金屬實驗 46 2-3實驗設備 47 2-3-1實驗合成設備 47 2-3-2實驗鑑定設備 47 2-4鑑定儀器之原理 49 2-4-1同步輻射中心光束線(National Synchrotron Radiation Research Center) 49 2-4-2 X射線粉末繞射(Powder X-Ray Diffractometer, XRD) 51 2-4-3氮氣吸附脫附儀(Accelerated surface area and porosimetry system) 52 2-4-4熱重分析儀(Thermogravimetric Analyzer) 57 2-4-5固態核磁共振儀(Solid State Nuclear Magnetic Resonance) 58 2-4-6穿透式電子顯微鏡(Transmission Electron Microscope) 68 2-4-7傅立葉紅外線吸收光譜儀(Fourier Transform Infrared Spectrometer) 70 2-4-8紫外光/可見光光譜儀(UV-Vis Spectrometer) 72 2-4-9感應偶合電漿質譜分析儀 (Inductively Coupled Plasma-Mass ) 76 2-4-10 掃描式電子顯微鏡(Scanning Electron Microscope) 77 第三章 結果與討論 78 3-1合成不同比例的FTC-x鑑定 78 3-1-1中孔洞材料FTC-x之XRD鑑定 78 3-1-2中孔洞材料FTC-x之氮氣吸脫附鑑定 81 3-1-3中孔洞材料FTC-x之FT-IR紅外線光譜鑑定 85 3-1-4中孔洞材料FTC-x之13C CP/MAS NMR鑑定 87 3-1-5中孔洞材料FTC-x之29Si MAS NMR鑑定 89 3-1-6中孔洞材料FTC-x之1H MAS NMR鑑定 92 3-1-7中孔洞材料FTC-x之13C{1H} HETCOR NMR鑑定 93 3-1-8中孔洞材料FTC-x之熱重分析鑑定 95 3-1-9中孔洞材料FTC-x之TEM鑑定 97 3-1-10中孔洞材料FTC-x之SEM鑑定 99 3-1-11中孔洞材料FTC-x之酸鹼滴定 100 3-2利用FTC-x吸附染料亞甲基藍應用 101 3-2-1 亞甲基藍UV光譜及檢量線 102 3-2-2中孔洞材料FTC-x對亞甲基藍最大吸附量結果 103 3-2-3 FTC-x在不同時間吸附亞甲基藍結果 105 3-2-4 FTC-x在不同pH值吸附亞甲基藍結果 106 3-2-5等溫吸附模式及動力學吸附結果 107 3-2-6利用FTC-x重覆使用能力 113 3-2-7比較FTC-x物理混合與化學混合 114 3-3合成不同比例的EC-x鑑定 115 3-3-1中孔洞材料EC-x之XRD鑑定 115 3-3-2中孔洞材料EC-x之氮氣吸脫附鑑定 119 3-3-3中孔洞材料EC-x之FT-IR紅外線光譜鑑定 122 3-3-4中孔洞材料EC-x之13C CP/MAS NMR鑑定 124 3-3-5中孔洞材料EC-x之29Si MAS NMR鑑定 126 3-3-6中孔洞材料EC-x之酸鹼滴定 129 3-3-7中孔洞材料EC-x之熱重分析鑑定 131 3-3-8中孔洞材料EC-x之SEM鑑定 133 3-3-9中孔洞材料EC-x之TEM鑑定 135 3-4利用EC-x吸附鉑、銀金屬應用 137 3-4-1中孔洞材料EC-x吸附鉑、銀金屬TEM結果 137 3-4-2中孔洞材料EC-x吸附鉑、銀金屬XRD結果 139 3-4-3中孔洞材料EC-x吸附鉑、銀金屬ICP/MAS結果 142 第四章結論 143 參考文獻 144 附錄 154 合成具羧酸官能基之S16C-x 154 實驗步驟 154 鑑定結果 156 XRD鑑定 156 氮氣等溫吸脫附結果 158 紅外線光譜結果 162 掃描式電子顯微鏡結果 164 穿透式電子顯微鏡結果 166 固態核磁共振光譜結果 168 熱重分析結果 170 圖目錄 圖1- 1M41S系列中孔洞分子篩15,16,27 3 圖1- 2 SBA-15的XRD與TEM圖譜36 4 圖1- 3 界面活性劑CTMABr親水端頭基與疏水端長碳鏈示意圖 5 圖1- 4 表面張力與界面活性劑對微胞排列之影響43 8 圖1- 5 界面活性劑堆積參數示意圖 9 圖1- 6不同pH值下氧化矽的水解聚合相對速率49,50 12 圖1- 7界面活性劑與矽源合成路徑圖27 13 圖1- 8 中孔洞材料合成反應機構27 (a)真實液晶相反應機制(TLCT) 15 圖1- 9 Monnier提出MCM-41以電荷密度相稱的形成機制51 17 圖1- 10 Firouzi等人利用(A)濃度30%形成六方堆積的 CTAB界面活性劑水溶液與(B)濃度6.8%形成微胞的CTAB水溶液所測的2H NMR52 17 圖1- 11合成機制圖 (a)後修飾法 (b)直接合成法 18 圖1- 12後修飾法修飾硫醇官能基53 19 圖1- 13利用共聚合之直接合成法57 19 圖1- 14 中孔洞發展前期材料鑑定開發後期材料應用 21 圖1- 15氰基水解成羧酸官能基紅外線光譜圖75 22 圖1- 16第一次利用直接合成法合出羧酸官能基中孔洞材料84 23 圖1- 17 (A)x-COOH-SBA-15之XRD圖:x= (a) 0, (b) 20, (c) 30, (d) 40, (e) 50, (f) 60及(B) 50-COOH-SBA-15 TEM圖85。 24 圖1- 18 proximal-C-A-SBA-15 & maximum-C-A-SBA-15合成圖77 25 圖1- 19 COOH-Bz-x之TEM圖:(a) COOH-Bz-40 之孔道圖, 26 圖1- 20 COOH-ES-x之SBA-15 TEM,x=(A)20(B)60(C)70(D)8073。 27 圖1- 21 FDU-12 不同溫度鍛燒之(A)氮氣吸脫附圖 (B)TEM圖 28 圖1- 22利用SBA-15 (a)吸附不同染料及(b)吸附過程為擬二級吸附10 29 圖1- 23 TPTAC-SBA-15養成金鉑金屬奈米顆粒92 31 圖1- 24為 2% wt 金屬 /SBA-15 TEM 圖93:(a) Pd/SBA-15,(b) Pt/SBA-15,(c) Au/SBA-15,(d) Ag/SBA-15。 32 圖1- 25 SBA-15包覆鉑離子流程圖94 32 圖1- 26 Ag/KIT-6 (a) 和 (b)為SEM圖(c) 和 (d) 為TEM 圖95 33 圖1- 27 奈米金屬線合成示意圖96 33 圖1- 28 SBA-15-COOH/Cu (a)TEM圖(b)顆粒大小分佈圖97 34 圖1- 29 金奈米粒子在不同濃度或中孔材料上養成5 34 圖2- 1 FTC-x初反應流程示意圖。 38 圖2- 2FTC-x流酸迴流示意圖。 40 圖2- 3 吸附MB最大量示意圖 43 圖2- 4 不同時間吸附MB示意圖 43 圖2- 5 同步輻射光產生示意圖。 50 圖2- 6 新竹國家同步輻射中心同步加速器示意圖 50 圖2- 7 X射線繞射示意圖。 51 圖2- 8在固體上等溫吸附的六種類型102 54 圖2- 9 IUPAC 提出的四種遲滯迴路曲線106 56 圖2- 10 TGA 基本構造儀器示意圖。 58 圖2- 11 氫原子在靜磁場中的能量分裂。 61 圖2- 12魔角旋轉之磁場與樣品相對位置圖。 66 圖2- 13 Si NMR訊號T群和Q群分子示意圖 67 圖2- 14交叉極化脈衝程序示意圖。 68 圖2- 15 穿透式電子顯微鏡結構示意圖 69 圖2- 16 分子振動類型圖。 71 圖2- 17 電子能階及躍遷示意圖 72 圖2- 18 紫外光可見光光譜儀 (a)單光徑型、(b)空間間隔式雙光徑型及 (c)時間分隔式雙光徑型。 75 圖2- 19原子放射光譜儀的組成如圖所示109 76 圖3- 1 as FTC-x移除模板前XRD繞射圖譜: 80 圖3- 2 FTC-x 移除模板後之XRD繞射圖譜 80 圖3- 3 FTC-x 之氮氣等溫吸脫附曲線圖: 83 圖3- 4 FTC-x之 FT-IR 光譜圖: 86 圖3- 5 CES分子和所對應在13C NMR之化學位移 87 圖3- 6 FTC-10 界面活性劑未移除乾淨 13C CP/MAS NMR 光譜 88 圖3- 7FTC-x 之 13C CP/MAS NMR 光譜圖: 88 圖3- 8 FTC-x 之 29Si MAS NMR 光譜圖: 90 圖3- 9 FTC-50 之 1H MAS NMR 光譜圖: (a)除水前、(b)除水後 92 圖3- 10 FTC-50 之 13C{1H} HETCOR NMR 光譜圖 94 圖3- 11 FTC-30 移除模板前後熱重分析(a)TGA圖;(b)DTA圖 95 圖3- 12 FTC-x 移除模板後熱重分析(a)TGA圖;(b)DTA圖 96 圖3- 13 FTC-x 之TEM圖 98 圖3- 14 FTC-x 移除模板後SEM圖 99 圖3- 15 FTC-x 酸鹼滴定曲線圖x= (a)20 (b)40。 100 圖3- 16亞甲基藍分子結構式。 101 圖3- 17亞甲基藍(a)UV吸收光譜、(b)檢量線。 102 圖3- 18 FTC-x吸附亞甲基藍最大量長條圖 104 圖3- 19 FTC-x在不同時間下吸附亞甲基藍 105 圖3- 20 FTC-30在不同pH下吸附亞甲基藍(a)長條圖(b)UV光譜 106 圖3- 21 FTC-x吸附亞甲基藍統整圖。 109 圖3- 22 FTC-x吸附亞甲基藍log qe對 log Ce作圖。 110 圖3- 23 FTC-x吸附亞甲基藍Ce/qe對Ce作圖。 110 圖3- 24 (a)FTC-x不同時間吸附MB (b)Pseudo-second order圖 112 圖3- 25 FTC-30重覆吸附性長條圖。 113 圖3- 26 寬角度XRD比較物理混合與化學混合。 114 圖3- 27 EC-x 移除模板前之XRD圖譜:x=(a) 0%, (b) 10%, (c) 20%, (d) 30%, (e) 40%, (f) 50%, (g) 60%, (h) 70%, (i) 80%, (j) 85%。 117 圖3- 28 EC-x 移除模板後之XRD圖譜:x=(a) 0%, (b) 10%, (c) 20%, (d) 30%, (e) 40%, (f) 50, (g) 60%, (h) 70%, (i) 80%, (j) 85%。 118 圖3- 29 EC-90 移除模板後之XRD圖譜(a)水熱2天(b)水熱5天 118 圖3- 30 EC-x 移除模板後氮氣等溫吸脫附圖:x=(a) 0%, (b) 10%, (c) 20%, (d) 30%, (e) 40%, (f) 50, (g) 60%, (h) 70%, (i) 80%, (j) 85%。 121 圖3- 31 EC-x 移除模板後紅外線光譜圖:x=(a) 0%, (b) 10%, (c) 20%, (d) 30%, (e) 40%, (f) 50, (g) 60%, (h) 70%, (i) 80%。 123 圖3- 32 EC-x 移除模板後13C CP/MAS NMR光譜圖: 125 圖3- 33 EC-x 移除模板後29Si MAS NMR光譜圖: 128 圖3- 34 EC-x 滴定曲線圖:x=(a) 20%, (b) 40%, (c) 60%, (d) 80%。 130 圖3- 35 EC-x移除模板後熱重分析圖:x=(a) 0%, (b) 20%, (c) 40%, (d) 50%, (e)60%, (f)80%。 132 圖3- 36 EC-x之SEM圖: 134 圖3- 37 EC-x TEM圖:x= (a)40, (b) 60, (c) 80,左為孔洞右為孔道 136 圖3- 38 EC-x (A) 銀奈米顆粒 (B)鉑奈米顆粒TEM圖: 138 圖3- 39 EC-x (A) 銀奈米顆粒 (B)鉑奈米顆粒寬角度XRD圖: 140 圖3- 40 EC-x (A) 銀奈米顆粒 (B)鉑奈米顆粒小角度XRD圖: 141   表目錄 表1- 1界面活性劑堆積參數與微胞結構、代表材料 9 表2- 1實驗藥品整理表 36 表2- 2 FTC-x樣品反應列表 38 表2- 3 EC-X 之樣品反應列表。 39 表2- 4 一些常見核種的性質。 60 表3- 1 FTC-x 之孔洞性質分佈表。 84 表3- 2 FTC-x 之 Tm 與 Qn 比例。 91 表3- 3 FTC-x 之當量點及酸當量數據表。 100 表3- 4 FTC-x 對亞甲基藍最大吸附量統計表。 104 表3- 5 FTC-x 吸附亞甲基藍等溫模式參數。 111 表3- 6 FTC-x 吸附亞甲基藍動力學吸附參數。 112 表3- 7 EC-x 孔洞性質分析表。 120 表3- 8 EC-x 29Si MAS NMR中,TE(BTEE)和TC(CES)比例 127 表3- 9 EC-x 當量點和酸當量數據表 129 表3-10 EC-x 吸附銀、鉑金屬顆粒大小 140 表3- 11 EC-x 吸附銀、鉑金屬離子之殘餘液ICP/MAS結果分析 142

    (1) Hu, Y.; Zhi, Z.; Zhao, Q.; Wu, C.; Zhao, P.; Jiang, H.; Jiang, T.; Wang, S.: 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microporous and Mesoporous Materials 2012, 147, 94-101.
    (2) Lin, C. X.; Qiao, S. Z.; Yu, C. Z.; Ismadji, S.; Lu, G. Q.: Periodic mesoporous silica and organosilica with controlled morphologies as carriers for drug release. Microporous and Mesoporous Materials 2009, 117, 213-219.
    (3) Wang, S.: Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials 2009, 117, 1-9.
    (4) Nielsen, I. S.; Taarning, E.; Egeblad, K.; Madsen, R.; Christensen, C. H.: Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst. Catalysis Letters 2007, 116, 35-40.
    (5) Hao, Y.; Chong, Y.; Li, S.; Yang, H.: Controlled Synthesis of Au Nanoparticles in the Nanocages of SBA-16: Improved Activity and Enhanced Recyclability for the Oxidative Esterification of Alcohols. The Journal of Physical Chemistry C 2012, 116, 6512-6519.
    (6) Oliveira, R. L.; Kiyohara, P. K.; Rossi, L. M.: Clean preparation of methyl esters in one-step oxidative esterification of primary alcohols catalyzed by supported gold nanoparticles. Green Chemistry 2009, 11, 1366.
    (7) Wu, T. M.; Wu, G. R.; Kao, H. M.; Wang, J. L.: Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds. Journal of chromatography. A 2006, 1105, 168-75.
    (8) Machida, M.; Fotoohi, B.; Amamo, Y.; Ohba, T.; Kanoh, H.; Mercier, L.: Cadmium(II) adsorption using functional mesoporous silica and activated carbon. Journal of hazardous materials 2012, 221-222, 220-7.
    (9) Bruzzoniti, M. C.; Prelle, A.; Sarzanini, C.; Onida, B.; Fiorilli, S.; Garrone, E.: Retention of heavy metal ions on SBA-15 mesoporous silica functionalised with carboxylic groups. Journal of separation science 2007, 30, 2414-20.
    (10) Huang, C.-H.; Chang, K.-P.; Ou, H.-D.; Chiang, Y.-C.; Wang, C.-F.: Adsorption of cationic dyes onto mesoporous silica. Microporous and Mesoporous Materials 2011, 141, 102-109.
    (11) Xin Zhuang, Y. W., Cuimiao Feng, Ying Shen, and Dongyuan Zhao: Highly Efficient Adsorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons. Chem. Mater. 2009, 706-716.
    (12) Fu, X.; Chen, X.; Wang, J.; Liu, J.: Fabrication of carboxylic functionalized superparamagnetic mesoporous silica microspheres and their application for removal basic dye pollutants from water. Microporous and Mesoporous Materials 2011, 139, 8-15.
    (13) IUPAC Manual of Symbols and Terminology, A., Part 1,Colloid and Surface Chemistry,: Pure Appl. Chem, 1972.
    (14) Ulrike Ciesla , F. S. t.: Ordered mesoporous materials. Microporous and Mesoporous Materials 1999, 27, 131-149.
    (15) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114, 10834-10843.
    (16) Kresge, C. T. L., M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710-712.
    (17) Sayari, A.: Catalysis by Crystalline Mesoporous Molecular Sieves. Chemistry of Materials 1996, 1840–1852.
    (18) Khenkin, R. N. A. M.: Vanadium-substituted MCM-41 zeolites as catalysts for oxidation of alkanes with peroxides Chemical Communications 1996, 2643-2644.
    (19) Chakraborty, B.; Pulikottil, A.; Viswanathan, B.: Alkylation of naphthalene with alcohols over mesoporous MCM-41. Catalysis Letters 1996, 39, 63-65.
    (20) Martin Hartmann, A. P. p., and Larry Kevan: Ethylene Dimerization and Butene Isomerization in Nickel-Containing MCM-41 and AlMCM-41 Mesoporous Molecular Sieves: An Electron Spin Resonance and Gas Chromatography Study. Journal of Physical Chemistry B 1996, 9906-9910.
    (21) Reddy, J. S.; Sayari, A.: Room-temperature synthesis of a highly active vanadium-containing mesoporous molecular sieve, V-HMS. Journal of the Chemical Society, Chemical Communications 1995, 0, 2231-2232.
    (22) Lee, Y. S.; Surjadi, D.; Rathman, J. F.: Effects of Aluminate and Silicate on the Structure of Quaternary Ammonium Surfactant Aggregates. Langmuir 1996, 12, 6202-6210.
    (23) Ko, C. H.; Ryoo, R.: Imaging the channels in mesoporous molecular sieves with platinum. Chemical Communications 1996, 0, 2467-2468.
    (24) Tsang, S. C.; Davis, J. J.; Green, M. L. H.; Hill, H. A. O.; Leung, Y. C.; Sadler, P. J.: Immobilization of small proteins in carbon nanotubes: high-resolution transmission electron microscopy study and catalytic activity. Journal of the Chemical Society, Chemical Communications 1995, 0, 1803-1804.
    (25) Abe, T.; Tachibana, Y.; Uematsu, T.; Iwamoto, M.: Preparation and characterization of Fe2O3 nanoparticles in mesoporous silicate. Journal of the Chemical Society, Chemical Communications 1995, 0, 1617-1618.
    (26) Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A.: Adsorption of methylene blue on low-cost adsorbents: a review. Journal of hazardous materials 2010, 177, 70-80.
    (27) Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M.: Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie 2006, 45, 3216-51.
    (28) Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky, G. D.; Chmelka, B. F.: Alkaline Lyotropic Silicate−Surfactant Liquid Crystals. Journal of the American Chemical Society 1997, 119, 3596-3610.
    (29) Prouzet, E.; Pinnavaia, T. J.: Assembly of Mesoporous Molecular Sieves Containing Wormhole Motifs by a Nonionic Surfactant Pathway: Control of Pore Size by Synthesis Temperature. Angewandte Chemie International Edition in English 1997, 36, 516-518.
    (30) Antonietti, M.; Göltner, C.: Superstructures of Functional Colloids: Chemistry on the Nanometer Scale. Angewandte Chemie International Edition in English 1997, 36, 910-928.
    (31) Huo, Q. M., D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff,; P. M.; Schüth, F. S., G. D.: Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 317-321.
    (32) Attard, G. S. G., J. C.: Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature 1995, 366-368.
    (33) Chen, C.-Y.; Li, H.-X.; Davis, M. E.: Studies on mesoporous materials: I. Synthesis and characterization of MCM-41. Microporous Materials 1993, 2, 17-26.
    (34) Goltner, C. G.; Antonietti, M.: Mesoporous materials by templating of liquid crystalline phases. Advanced Materials 1997, 9, 431-436.
    (35) Tanev, P. T.; Pinnavaia, T. J.: A Neutral Templating Route to Mesoporous Molecular Sieves. Science 1995, 267, 865-867.
    (36) Zhao, D.: Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548-552.
    (37) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D.: Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. Journal of the American Chemical Society 1998, 120, 6024-6036.
    (38) Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J.: Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants. Science 1995, 269, 1242-1244.
    (39) Impéror-Clerc, M.; Davidson, P.; Davidson, A.: Existence of a Microporous Corona around the Mesopores of Silica-Based SBA-15 Materials Templated by Triblock Copolymers. Journal of the American Chemical Society 2000, 122, 11925-11933.
    (40) Ravikovitch, P. I.; Neimark, A. V.: Characterization of Micro- and Mesoporosity in SBA-15 Materials from Adsorption Data by the NLDFT Method. The Journal of Physical Chemistry B 2001, 105, 6817-6823.
    (41) Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R.: Characterization of the Porous Structure of SBA-15. Chemistry of Materials 2000, 12, 1961-1968.
    (42) Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M.: Block-Copolymer-Templated Ordered Mesoporous Silica:  Array of Uniform Mesopores or Mesopore−Micropore Network? The Journal of Physical Chemistry B 2000, 104, 11465-11471.
    (43) 王鳳英: 界面活性劑的原理與應用. 高立圖書股份有限公司, 1996.
    (44) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W.: Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1976, 72, 1525-1568.
    (45) Tanford, C.: The Hydrophobic Effect: Formation of Micelles and Biological Membranes; Wiley: New York, 1973.
    (46) Evans, F. D. W., H. : The Colloidal Domain, 2nd Ed, ; VHC: New York, 1999
    (47) Qi, L.; Ma, J.; Cheng, H.; Zhao, Z.: Synthesis and characterization of mixed CdSZnS nanoparticles in reverse micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 111, 195-202.
    (48) Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.: Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chemistry of Materials 1994, 6, 1176-1191.
    (49) Brinker, C. J.: Hydrolysis and condensation of silicates: Effects on structure. Journal of Non-Crystalline Solids 1988, 100, 31-50.
    (50) Schubert, U. H., N.: Synthesis of inorganic materials; Wiley: New York, 2000.
    (51) Monnier, A.; Schüth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F.: Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science 1993, 261, 1299-1303.
    (52) Firouzi, A.; Kumar, D.; Bull, L.; Besier, T.; Sieger, P.; Huo, Q.; Walker, S.; Zasadzinski, J.; Glinka, C.; Nicol, J.; et, a.: Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 1995, 267, 1138-1143.
    (53) Liu, J.; Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Gong, M.: Hybrid Mesoporous Materials with Functionalized Monolayers. Advanced Materials 1998, 10, 161-165.
    (54) Brunel, D.: Functionalized micelle-templated silicas (MTS) and their use as catalysts for fine chemicals. Microporous and Mesoporous Materials 1999, 27, 329-344.
    (55) Impens, N. R. E. N.; van der Voort, P.; Vansant, E. F.: Silylation of micro-, meso- and non-porous oxides: a review. Microporous and Mesoporous Materials 1999, 28, 217-232.
    (56) Walcarius, A.; Etienne, M.; Lebeau, B.: Rate of Access to the Binding Sites in Organically Modified Silicates. 2. Ordered Mesoporous Silicas Grafted with Amine or Thiol Groups. Chemistry of Materials 2003, 15, 2161-2173.
    (57) Stein, A.; Melde, B. J.; Schroden, R. C.: Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age. Advanced Materials 2000, 12, 1403-1419.
    (58) Maria Chong, A. S.; Zhao, X. S.: Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials. The Journal of Physical Chemistry B 2003, 107, 12650-12657.
    (59) Steel, A.; Carr, S. W.; Anderson, M. W.: 29Si solid-state NMR study of mesoporous M41S materials. Chemistry of Materials 1995, 7, 1829-1832.
    (60) Lim, M. H.; Blanford, C. F.; Stein, A.: Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts. Chemistry of Materials 1998, 10, 467-470.
    (61) Kao, H.-M.; Shen, T.-Y.; Wu, J.-D.; Lee, L.-P.: Control of ordered structure and morphology of cubic mesoporous silica SBA-1 via direct synthesis of thiol-functionalization. Microporous and Mesoporous Materials 2008, 110, 461-471.
    (62) Burleigh, M. C.; Markowitz, M. A.; Spector, M. S.; Gaber, B. P.: Direct Synthesis of Periodic Mesoporous Organosilicas:  Functional Incorporation by Co-condensation with Organosilanes. The Journal of Physical Chemistry B 2001, 105, 9935-9942.
    (63) Mercier, L.; Pinnavaia, T. J.: Direct Synthesis of Hybrid Organic−Inorganic Nanoporous Silica by a Neutral Amine Assembly Route:  Structure−Function Control by Stoichiometric Incorporation of Organosiloxane Molecules. Chemistry of Materials 1999, 12, 188-196.
    (64) Chiu, P.-J.; Vetrivel, S.; Chiang, A. S. T.; Kao, H.-M.: Synthesis and characterization of cubic periodic mesoporous organosilicas with a high loading of disulfide groups. New Journal of Chemistry 2011, 35, 489.
    (65) Pan, Y.-C.; Gavin Tsai, H.-H.; Jiang, J.-C.; Kao, C.-C.; Sung, T.-L.; Chiu, P.-J.; Saikia, D.; Chang, J.-H.; Kao, H.-M.: Probing the Nature and Local Structure of Phosphonic Acid Groups Functionalized in Mesoporous Silica SBA-15. The Journal of Physical Chemistry C 2012, 116, 1658-1669.
    (66) Hall, S. R.; Davis, S. A.; Mann, S.: Cocondensation of Organosilica Hybrid Shells on Nanoparticle Templates:  A Direct Synthetic Route to Functionalized Core−Shell Colloids. Langmuir 1999, 16, 1454-1456.
    (67) Zhang, N.; Li, G.; Zhao, J.; Liu, T.: Three-dimensional wormhole mesoporous-based material as a regenerative solid optical sensor for detection of Hg2+ in aqueous media. New Journal of Chemistry 2013, 37, 458.
    (68) Cheng, S.-H.; Kao, K.-C.; Liao, W.-N.; Chen, L.-M.; Mou, C.-Y.; Lee, C.-H.: Site-specific immobilization of cytochrome c on mesoporous silica through metal affinity adsorption to enhance activity and stability. New Journal of Chemistry 2011, 35, 1809.
    (69) Ho, K. Y.; McKay, G.; Yeung, K. L.: Selective Adsorbents from Ordered Mesoporous Silica. Langmuir 2003, 19, 3019-3024.
    (70) Cho, E.-B.; Kim, D.; Mandal, M.; Gunathilake, C. A.; Jaroniec, M.: Benzene-Silica with Hexagonal and Cubic Ordered Mesostructures Synthesized in the Presence of Block Copolymers and Weak Acid Catalysts. The Journal of Physical Chemistry C 2012, 116, 16023-16029.
    (71) Wu, H. Y.; Shieh, F. K.; Kao, H. M.; Chen, Y. W.; Deka, J. R.; Liao, S. H.; Wu, K. C.: Synthesis, bifunctionalization, and remarkable adsorption performance of benzene-bridged periodic mesoporous organosilicas functionalized with high loadings of carboxylic acids. Chemistry 2013, 19, 6358-67.
    (72) Ting, C. C.; Chung, C. H.; Kao, H. M.: Direct synthesis of bifunctional periodic mesoporous benzene-silicas functionalized with a high loading of carboxylic acid groups. Chem Commun (Camb) 2011, 47, 5897-9.
    (73) Kao, H. M.; Chung, C. H.; Saikia, D.; Liao, S. H.; Chao, P. Y.; Chen, Y. H.; Wu, K. C.: Highly carboxylic-acid-functionalized ethane-bridged periodic mesoporous organosilicas: synthesis, characterization, and adsorption properties. Chemistry, an Asian journal 2012, 7, 2111-7.
    (74) Lei, C.; Shin, Y.; Liu, J.; Ackerman, E. J.: Entrapping Enzyme in a Functionalized Nanoporous Support. Journal of the American Chemical Society 2002, 124, 11242-11243.
    (75) Liu, N.; Assink, R. A.; Brinker, C. J.: Synthesis and characterization of highly ordered mesoporous thin films with –COOH terminated pore surfaces. Chemical Communications 2003, 370-371.
    (76) Wahab, M.: Hybrid periodic mesoporous organosilica materials prepared from 1,2-bis(triethoxysilyl)ethane and (3-cyanopropyl)triethoxysilane. Microporous and Mesoporous Materials 2004, 69, 19-27.
    (77) Yu, X.; Yu, X.; Wu, S.; Liu, B.; Liu, H.; Guan, J.; Kan, Q.: The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation. Journal of Solid State Chemistry 2011, 184, 289-295.
    (78) Pérez-Quintanilla, D.; del Hierro, I.; Fajardo, M.; Sierra, I.: Mesoporous silica functionalized with 2-mercaptopyridine: Synthesis, characterization and employment for Hg(II) adsorption. Microporous and Mesoporous Materials 2006, 89, 58-68.
    (79) Wang, Y.; Li, B.; Zhang, L.; Liu, L.; Zuo, Q.; Li, P.: A highly selective regenerable optical sensor for detection of mercury(ii) ion in water using organic–inorganic hybrid nanomaterials containing pyrene. New Journal of Chemistry 2010, 34, 1946.
    (80) Boullanger, A.; Alauzun, J.; Mehdi, A.; Reyé, C.; Corriu, R. J. P.: Generic way for functionalised well-ordered cubic mesoporous silica via direct synthesis approach. New Journal of Chemistry 2010, 34, 738.
    (81) Zhu, R.; Shen, J.; Wei, Y.; Zhang, F.: Urea-functionalized mesoporous polymeric catalyst: a cooperative effect between support and secondary amine on water-medium Knoevenagel reactions. New Journal of Chemistry 2011, 35, 1861.
    (82) Jin, D.; Lee, J. H.; Seo, M. L.; Jaworski, J.; Jung, J. H.: Controlled drug delivery from mesoporous silica using a pH-response release system. New Journal of Chemistry 2012, 36, 1616.
    (83) Rosenholm, J. M.; Czuryszkiewicz, T.; Kleitz, F.; Rosenholm, J. B.; Lindén, M.: On the Nature of the Brønsted Acidic Groups on Native and Functionalized Mesoporous Siliceous SBA-15 as Studied by Benzylamine Adsorption from Solution. Langmuir 2007, 23, 4315-4323.
    (84) Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.; Che, S.: Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures. Journal of Materials Chemistry 2007, 17, 1216.
    (85) Tsai, C. T.; Pan, Y. C.; Ting, C. C.; Vetrivel, S.; Chiang, A. S.; Fey, G. T.; Kao, H. M.: A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups. Chem Commun (Camb) 2009, 5018-20.
    (86) Fan, J.; Yu, C.; Gao, F.; Lei, J.; Tian, B.; Wang, L.; Luo, Q.; Tu, B.; Zhou, W.; Zhao, D.: Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angewandte Chemie 2003, 42, 3146-50.
    (87) Yu, C.; Tian, B.; Fan, J.; Stucky, G. D.; Zhao, D.: Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers. Chemical Communications 2001, 2726-2727.
    (88) Yu, C.; Tian, B.; Fan, J.; Stucky, G. D.; Zhao, D.: Nonionic Block Copolymer Synthesis of Large-Pore Cubic Mesoporous Single Crystals by Use of Inorganic Salts. Journal of the American Chemical Society 2002, 124, 4556-4557.
    (89) Yang, C. M.; Sheu, H. S.; Chao, K. J.: Templated Synthesis and Structural Study of Densely Packed Metal Nanostructures in MCM-41 and MCM-48. Advanced Functional Materials 2002, 12, 143-148.
    (90) Raja, R.; Hermans, S.; S. Shephard, D.; F. G. Johnson, B.; Raja, R.; Sankar, G.; Bromley, S.; Meurig Thomas, J.: Preparation and characterisation of a highly active bimetallic (Pd-Ru) nanoparticle heterogeneous catalyst[dagger]. Chemical Communications 1999, 0, 1571-1572.
    (91) Han, Y.-J.; Kim, J. M.; Stucky, G. D.: Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15. Chemistry of Materials 2000, 12, 2068-2069.
    (92) Yang, C.-m.; Liu, P.-h.; Ho, Y.-f.; Chiu, C.-y.; Chao, K.-j.: Highly Dispersed Metal Nanoparticles in Functionalized SBA-15. Chemistry of Materials 2002, 15, 275-280.
    (93) Wang, Z.-j.; Xie, Y.; Liu, C.-j.: Synthesis and Characterization of Noble Metal (Pd, Pt, Au, Ag) Nanostructured Materials Confined in the Channels of Mesoporous SBA-15. The Journal of Physical Chemistry C 2008, 112, 19818-19824.
    (94) Prashar, A. K.; Hodgkins, R. P.; Kumar, R.; Nandini Devi, R.: In situ synthesis of Pt nanoparticles in SBA-15 by encapsulating in modified template micelles: size restricted growth within the mesochannels. Journal of Materials Chemistry 2008, 18, 1765.
    (95) Shon, J. K. P., J. N.; Hwang, S. H.; Jin, M. S.; Moon, K. Y.; Boo, J. H.; Han, T. ; H.; Kim, J. M.: Bull. Korean Chem. Soc. 2010, 415-418.
    (96) Azusa Takai, Y. D., Yusuke Yamauchi, and Kazuyuki Kuroda: Soft-Chemical Approach of Noble Metal Nanowires Templated from Mesoporous Silica (SBA-15) through Vapor Infiltration of a Reducing Agent. The Journal of Physical Chemistry C 2010, 7586–7593.
    (97) Chen, C. S.; Chen, C. C.; Chen, C. T.; Kao, H. M.: Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups. Chem Commun (Camb) 2011, 47, 2288-90.
    (98) Yang, Q.; Liu, J.; Yang, J.; Zhang, L.; Feng, Z.; Zhang, J.; Li, C.: Acid catalyzed synthesis of ordered bifunctionalized mesoporous organosilicas with large pore. Microporous and Mesoporous Materials 2005, 77, 257-264.
    (99) Goto, Y.; Inagaki, S.: Synthesis of large-pore phenylene-bridged mesoporous organosilica using triblock copolymer surfactant. Chemical Communications 2002, 2410-2411.
    (100)Michael H. Huang, A. C. a. P. Y.: Ag nanowire formation within mesoporous silica. Chem. Commun. 2000, 1063–1064.
    (101) Baiker, A.: International Journal of Chemical Engineering 1985, 25.
    (102) Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E.: On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society 1940, 62, 1723-1732.
    (103) 王奕凱, 邱., 李秉傑合譯: 非均勻系催化原理及應用; 國立編譯館, 渤海堂文化公司,: 台北, 1993.
    (104) Barrett, E. P.; Joyner, L. G.; Halenda, P. P.: The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society 1951, 73, 373-380.
    (105) Gregg, S. J. S., K. S. W. : Adsorption, Surface Area and Porosity, 2nd Ed.; Academic press: New York, 1982.
    (106) G. Ertl, H. K., J. Weitkamp: Handbook of Heterogeneous Catalysis; VCH D-69451 Weinheim, 1997; Vol. 3.
    (107) Pan, Y. C. L., C. H.; Kao, H. M.; The Chinese Chemical Society: Taipei, 2008; pp 1-11.
    (108) Benett, A. E. R., C. M.; Auger, M.; Lakshmi, K. V.; Griffin, R. G.: J.Chem. Phys. 1995, 6951-6958.
    (109) 王明光, 王.: 實用儀器分析; 合記圖書出版社: 台灣, 2003.
    (110) Hartono, S. B.; Qiao, S. Z.; Liu, J.; Jack, K.; Ladewig, B. P.; Hao, Z.; Lu, G. Q. M.: Functionalized Mesoporous Silica with Very Large Pores for Cellulase Immobilization. The Journal of Physical Chemistry C 2010, 114, 8353-8362.
    (111) Gibbons, G. J. H., D.; Howes, A. P.: Journal of Sol-Gel Science and Technology 1998, 379- 383.
    (112) Lim, M. H.; Stein, A.: Comparative Studies of Grafting and Direct Syntheses of Inorganic−Organic Hybrid Mesoporous Materials. Chemistry of Materials 1999, 11, 3285-3295.
    (113) Gao, F.; Botella, P.; Corma, A.; Blesa, J.; Dong, L.: Monodispersed Mesoporous Silica Nanoparticles with Very Large Pores for Enhanced Adsorption and Release of DNA. The Journal of Physical Chemistry B 2009, 113, 1796-1804.
    (114) Liang, Y.; Anwander, R.: Synthesis of pore-enlarged mesoporous organosilicas under basic conditions. Microporous and Mesoporous Materials 2004, 72, 153-165.
    (115) Hamoudi, S.; Kaliaguine, S.: Sulfonic acid-functionalized periodic mesoporous organosilica. Microporous and Mesoporous Materials 2003, 59, 195-204.
    (116) Wang, W.; Xie, S.; Zhou, W.; Sayari, A.: Synthesis of Periodic Mesoporous Ethylenesilica under Acidic Conditions. Chemistry of Materials 2004, 16, 1756-1762.
    (117) Huang, M. H.; Choudrey, A.; Yang, P.: Ag nanowire formation within mesoporous silica. Chemical Communications 2000, 1063-1064.
    (118) Hyde, T.: Final Analysis: Crystallite Size Analysis of Supported Platinum Catalysts by XRD. Platinum Metals Review 2008, 52, 129-130.
    (119) Tae-Wan Kim, R. R., Michal Kruk, Kamil P. Gierszal, Mietek Jaroniec,; Satoshi Kamiya, a. O. T.: Tailoring the Pore Structure of SBA-16 Silica Molecular Sieve through the Use of Copolymer Blends and Control of Synthesis Temperature and Time. The Journal of Physical Chemistry B 2004, 108, 11480-11489.

    QR CODE
    :::